EVEN AND EVEN LAYOUT (1)

= This layout has been presented by G. Even and S. Even
['00], and it is based on the notion of Layered Cross
Product

= Def. A layered graph of I1+1 layers G=(V,, V,, ..., V,, E)
consists of I[+1 layers of nodes; V;is the (non-empty) set
of nodes in layer i; E is a set of directed edges: edge
(u,v) connects two nodes of two adjacent layers, that is,
if u lies on layer i then v lies on layer i+1.

EVEN AND EVEN LAYOUT (3)

Exemples of LCP

G1xG2
Even and Litman proved that

G1 G2
many well known topologies
are the LCP of simple
structures (e.g. trees).

? % Namely, the butterfly network

{% is the LCP of two binary trees,

one of them is upward and the
other one is downward.
@g) o) Go) (9o

EVEN AND EVEN LAYOUT (2)

= Def. [Even & Litman ’92] The Layered Cross Product (LCP)

of two layered graphs of I+!/ layers each,
Gi=W,, v}, .., VL, E)and G?=(V2 V2 ..., Vi E?),is a
layered graph of I+1 layers, G=(V,, V,, ...,V E), where:

= For every i=0, ..., ], V; = V/xV? (i.e. each layer is the
cartesian product of the corresponding layers in G!
and G?);

= There is an edge (u,v) in G connecting nodes (u’,u?)

and (v.,v?) iff (u!,v!) and (u%v?) are edges in G! and G?,
respectively.
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EVEN AND EVEN LAYOUT (4)

The Projection Methodology (PM):

=Let G! and G? two layered graphs of [+] layers each
and let G denote their LCP. A layout of G is obtained
with the PM as follows:
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EVEN AND EVEN LAYOUT (5) EVEN AND EVEN LAYOUT (6)

The Projection Methodology (cntd):
The Projection Methodology (contd):

, = ... A three-dimensional drawing of the LCP G is
= Consider a cube and draw the graph G! on the xy face so that constructed in the cube as follows:

. — i 1 1 . . . . . .
(a) the y-coordinate of every node u e V' equals 1 «if ueV/! is drawn in coordinates (x,, i, 0) and veV¢ is
= (b) the x-coordinate of every node is an integer. drawn in coordinates (0, i, z,), then the coordinates of
= Similarly, draw the graph G? on the yz face node (u,v)e VI are (x w1, Zy)- ) )
In other words, the nodes of G are the intersections
between the lines orthogonal to plane xy and

passing through nodes of G! and the lines
orthogonal to plane yz

and passing through nodes of G%.
= A 2D drawing of G is obtained
by projecting the 3D drawing to

the xz plane.

=

EVEN AND EVEN LAYOUT (1) EVEN AND EVEN LAYOUT (8) -

Obs. It is possible to avoid to construct the 3D
representation by immediately using the prolongations

on plane xz of the projections of nodes in layer i of G! on »The PM may produce layouts that do not satisfy the
the x axis and of node in layer i of G? on the z axis, constraints required by the Thompson model.
i=0,...,1 = For example, the drawing above is a grid drawing but it
is not an orthogonal drawing.
y.ll
(\[ Bf = We now describe how rectilinear layouts of G can be
y e, obtained via the PM. First, we formalize necessary and
< > sufficient conditions:
a0 = for the edges of the xz projection of G to be along grid
/i\o/ paths,

= for nodes to be mapped to different grid points, and
@ = for not using any grid edge more than once. @
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EVEN AND EVEN LAYOUT (9)

Four types of edges in the product graph G:
1.

The product of two diagonal edges yields a diagonal
edge;

The product of a vertical edge and a diagonal edge
yields a vertical edge;

The product of a diagonal edge and a vextical edge
yields a horizontal edge; ¥

The product of two vertical edges

yelds a single grid point. ‘sf
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EVEN AND EVEN LAYOUT (11)

We need to impose that nodes in different layers do
not overlap:

2. The PM generates a layout of G in which at most one
node is mapped to each grid point if and only if the
sets{(x,, z,): u € V! ev e V#} are disjoint, for each i=0,
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EVEN AND EVEN LAYOUT (10)

In order to get a feasible layout through the PM, we
have to impose that the product of either two diagonal
edges or two vertical edges never occurs.

More precisely:

1. The PM generates a layout of G in which the edges are
grid lines if and only if the drawings of G! and G? on the
faces of the cube satisfy the following condition: For
every edge e e E, exactly one of its factor is drawn
diagonally.

This claim avoids overlappings of nodes of the same
layer, too.

EVEN AND EVEN LAYOUT (12)

Consider now two diagonal edges (a,b) and (c,d) in G/;
the coordinates of nodes g, b, ¢, d are:

= node a: (x,,1,0);
= node b: (x,,i+1,0);
= nodec: (x,],0);
= noded: (x4 j+1,0).

We say that these two edges are consistent if the open
intervals (x, x,) and (x, x;) are disjoint.

archi consisterti archi non consistenti




EVEN AND EVEN LAYOUT (13) EVEN AND EVEN LAYOUT (14)

3. The PM generates a layout of G in which no grid edge is
used twice if and only if for every two inconsistent edges of
one of the multiplicands the following condition holds:
The two edges are not in the same layer of the
multiplicand, and
on the two layers in which they appear, there are no
(straight) edges of the other multiplicand which are

In order to produce a feasible layout, we need to impose
that all the three claims are satisfied.

Let us consider the Claims one by one:

collinear.

Inconsistent edges on the same layer Inconsistent edges on different layers
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EVEN AND EVEN LAYOUT (15) EVEN AND EVEN LAYOUT (16)

1. The PM generates a layout of G in which the edges : :
are grid lines if and only if the drawings of G! and G? T T -
on the faces of the cube satisfy the following condition:
For every edge e e E, exactly one of its factor is drawn

diagonally.

A solution is to double the number of edge levels so

that edges in the drawing of G’ are diagonal in odd The doubling of the number of edge levels is achieved
layers and straight in the even layers, while the edges by stretching each edge of the two multiplicands to
in the drawing of G? are straight in the odd layers and become a path of two edges.

diagonal in the even layers. . . .
g ¥ In this way we simulate the creations of edge bends.
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EVEN AND EVEN LAYOUT (17)

2. The PM generates a layout of G in which at most one
node is mapped to each grid point if and only if the
sets{(x,, z,):u € V! ev e V#}are disjoint, for each i=0, ..., 1.

A simple way to guarantee that this condition will hold is
to make sure that no two nodes in the drawing of G! (G?),
except for the two end-points of the same straight edge,
share the x-coordinate (z-coordinate).

This is always possible if we opportunely enlarge the
drawings of the two factors.

©

EVEN AND EVEN LAYOUT (19)

©

EVEN AND EVEN LEYOUT (18)

3. The PM generates a layout of G in which no grid edge is
used twice if and only if for every two inconsistent edges
of one of the multiplicands the following condition holds:
= The two edges are not in the same layer of the
multiplicand, and

= on the two layers in which they appear, there are no
(straight) edges of the other multiplicand which are
collinear.

This condition is harder to enforce and is a severe
limitation on this technique. For this reason, we limit to
networks, each of which is the LCP of two trees.

©

EVEN AND EVEN LAYOUT (20)

The butterfly network is the LCP of two binary trees, one
drawn upward and one drawn downward. (We dedicate a
column to each vertex to prevent vertices of the layout
from colliding.)

Proceed as follows:

= Draw one tree next to the xy plane and the other next to
the yz plane

= Construct their LCP in 3D inside the cube, in such a
way that the two trees are the projections of the
resulting butterfly on the xy and yz planes

= The projection of this 3D figure on the floor is a planar
layout of the butterfly
©



EVEN AND EVEN LAYOUT (21) w

This layout has the following properties:
= It’s symmetric; o
= Its height is H=2(N-1);
= Its width is W=2(N-1);
= Its area is 4N?+o(I\?);

*Input and output nodes are not on the boundary
(negative property...)
= All the edges on the same layer has the same length.

©

OTHER RESULTS (1)

With the aim of optimizing the layout area, other layout
algorithms have been proposed:

= Dinitz [’98] proves that the area of the Even & Even
layout can me decreased by means of some local
adjustments, so to achieve area 11/6
N2+o(IN?)

= Later, Avior et al. ['98] prove that any butterfly layout
cannot have area smaller than N? + o(\V?) if “slanted”
drawing is not allowed, and they provide an
algorithm producing a layout of optimal area.

COMPARING THE TWO TECHNIQUES

= WISE - PROs:

= relatively small area

= It “looks like” a butterfly

= Input/output nodes on the boundary
= WISE - CONSs:

= knok-knees

= “slanted” grid

» EVEN & EVEN - PROs:
= [t eliminates all the flaws

*» EVEN & EVEN - CONs:
» Larger area
* input/output nodes inside the layout

OTHER RESULTS (2)

Finally, Dinitz et al. ['99] prove that, if a “slanted”
drawing is allowed, area 1/2 N?+o(I\?) is necessary
and sufficient.

These works definitively close the optimal area layout
problem of the Butterfly network.



OPTIMAL ARER LAYOUT
OF THE BUTTERFLY NETWORK

OPTIMAL AREA LAYOUT - IDEA (2)

= Hence, an (n-1)-dimensional Butterfly can be built as a
pair of (n-2)-dim. Butterflies connected by one node
layer and one edge layer.

= If we cut out the input and output nodes from an n-dim.
Butterfly, we get:
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OPTIMAL AREA LAYQUT - IDEA (1)

* The two papers that provide an optimal area layout
base their results on the following lemma:

Lemma: For any non-negative integers j, k, 05j<Sj+k<n,
the subgraph of the n-dim. Butterfly induced by the
nodes of levels j, j+1, ..., j+k is the disjoint union of 27-%

copies of k-dimensional butterflies.

= In particular,if j=0 and k=n-1:

OPTIMAL AREA LAYOUT - IDEA (3)

= Each one of

these (n-2)-dim.
Butterflies can
be, in turn, cut
into many
smaller
butterflies:
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OPTIMAL AREA LAYQUT - IDER (4) OPTIMAL AREA LAYQUT - IDER (5)

The previous layout can be better specified as follows: Each rectangle contains a Butterfly that can be represented,
either horizontally or vertically, layer by layer as follows:

IAWAWAWAY
\/ \/ \/ \/

IAYAYAYN IN TN NN

\/ \/\J\J \/ \/ \J \J channel

channel

routing routing

[
U
]

AWAWAWAY
\/ \/ \/ \/

ININVINIVIVIVIV A

Obs.: this layout is far from being optimal; nevertheless it
allows to produce a final optimal layout.

\\\ij»f\ IAWAWAWAWAWA

© ©

OPTIMAL AREA LAYOUT - IDEA (6) OPTIMAL AREAR LAYOUT - IDEA (T)

It remains to connect the small rectangular butterflies: In the case of slanted layout, it can be bent along the line:

NANNNANONLD

NALNANOADOAOLND

oooooooooooooooo



OPTIMAL AREA LAYQUT - IDER (§)

= It is possible to prove tight lower and upper bounds on LBYOUT OF THE
the layout area for both the models (usual and slanted). HYPERCUBE NETWORK
= The interested students can look at:
= A. Avior, T.C., S. Even, A. Litman, A.L. Rosenberg: A Tight
Layout of the Butterfly Network. Theory of Computing
Systems 31, 1998.
=Y. Dinitz, S. Even, M. Zapolotsky: A Compact Layout of
the Butterfly. J. of Interconnection Networks 4, 2003.
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THE HYPERCUBE (1) THE HYPERCUBE (2)

* Widely used for parallel computation, thanks to its g

nice properties (high regularity, logarithmic
diameter, good fault tolerance, ...).

¢ Def. The n-dimensional Hypercube, Q,, has N=2"
nodes and /2 n2" edges. Each node is labeled with
an n-bit binary string, and two nodes are linked
with an edge iff their binary strings differ in
precisely one bit.

* The edges of the hypercube can be naturally ) o _ ' )
partitioned according to the dimensions that they Q, can be built by joining with an edge nodes in two different
traverse and Q,: Q, ;=Q,;... copies of @, ;if they have the same label.

@ Obs.:These edges form a perfect matching. @



THE HYPERCUBE (3)

Property: Q, has diameter log N.
Proof. Any two nodes

U=U,Uy... Uy @nd V=V, V,... V), are connected by the path:

111112. ax ulong]uZ. .e ulogN-)VIVZ. ae ulog]ﬁ. s QV]VZ. ae VIogN

The claim trivially follows.

THE HYPERCUBE (5)

Th. A lower bound on the layout area of a network is the
square of its bisection width (already proved).

Cor. Each layout of Q, has area at least N?/4.

In the following: layout with area 4/9N?+o(IN?), that hence
is almost optimal (far from the lower bound by a factor

of 1 .7) [Yeh, Varvarigos, Parhami, ‘99].

THE HYPERCUBE (3)

Reminder: The bisection width of a network is the
minimum number of edges one has to cut to disconnect
the network into two equally sized subnetworks.

Property. BW(Q,)=N/2.

Proof. (idea) the red edges
(=edges in a single
dimension) divide the
hypercube into two equally
sized subnetworks; they are
N/2 and it is not possible to
cut a smaller number of
edges to get the same result.

COLLINEAR LAYOUT (1)

* Reminder: In a collinear layout all nodes are placed on
the same line. Instead of computing its area, it is usual to

count the number of necessary

= We start with a 2-dim. Hypercube, and inductively move
to hypercubes of higher dimensions:

N QZ:

00 01
=
[ OmE

10 11

2 tracks
©



COLLINEAR LAYOUT (2) COLLINEAR LAYOUT (3)

= If n odd: Assume that we have a collinear layout for = If n is even: To obtain the collinear layout of Q, we
Q,.; that requires f(n-1) tracks: Q, start with the layouts of four Q, ,s:

iEnsiEnll e
iAoy ey —1 1
I |nn1n||0011|n||’|En11n|0111 1004 101041011 1%10'1111]
f(n+2)=4f(n)+2
2 tracks 1 track

Tot. f(n)=2f(n-1)+1 tracks @ @

COLLINEAR LAYOUT (4) COLLINEAR LAYOUT ()

= Th. The number of tracks required for the collinear

layout of Q, is 2/3N (where N=2" is the number of (proof cntd)
nodes).
) ] ) The odd case is analogous. u
. We solve the following recurrence equation:
= f(n)=21(n-1)+1 if n odd
» f(n)=4f(n-2)+2 if n even The area of this layout is (2/3N+n) x (nN).
= f(2)=2 Th. Q, can be laid out in 4/9N?+o(IN?) area.
Even case: Proof idea. Let n=n;+n,.

f(n)=4f(n-2)+2=4%(n-4)+4x2+2=
—43f(n 6)+25+23+2=...=
..when n- 2k—2 ittk=(n-2)/2...= 4 f(n~ 2k)+22 4=
4"22+l 2 We connect the .?“1 nodes that'belong to the same column
= 52 = 5N @ vertically according to the collinear layout of a Q,,;. @

Let us use 27! copies of the collinear layout of Q,,, each
placed along a row.

e f(2)+22 4 = 224’




COLLINEAR LAYOUT (6)

(proof cntd)

Reminder: Q, needs of

2,32¥ tracks
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# of horiz. tracks (rows) : If: - [ SR =

20l copies X 2,27 tracks  — __ u:w --|D,1:W I 01:1}' D:im ‘";F
Additive height (nodes):  [o i ii o e e
27! copies X n, iuf :
Total heigth: t_* ol o]
271 x (2,527%+ ny) =

2/32n1+n2+n2 onl

3D LAYOUT

COLLINEAR LAYOUT (1)
(proof cntd) .,.,.I,,I., FEE,?T%—W

Reminder: [ H |
=, 2n1+n2+n an : n1nn1F 01010[1 01011 5| 01100 (01101 5| 011105 | 01111}
- 4/3 2 T 1T
Iy H 1 ]
. T H
Thel 1 1S it ;.ompu::]:e.ld 1nnn1r 10010 1nn11r 10100f; (10101
analogously, swiicihing e - T

roles of n; and n,,. jliLf- ﬁli:f-

i
il

00111

L= ]

GRIE R

10111

2/32n1+n2+n1 on2

Area=(z/sN+n, 2"%)(z2,3N+n, 2")=
=4/9N?+o(N?) if n; and n, are o(N), e.g. if n;=0(ny)=n ,,.

©

3D LAYOUT PROBLEM (1}

« The diffusion of the 3D layout has increased in the last
thirty years.

- The topology is lain out on a series of slices.

« Further optimization of the wire length and number of
bends

Less silicon used.

3D Structure 2D Stucwe




3D LAYOUT PROBLEM (2)

Def. A 3D layout of a topology G is a 1-1 function between
and the 3D grid such that:

* the nodes are mapped into grid points
¢ it is better if the nodes lie on the external slice in order to
minimize: energy consuming, production of heat and
difficulty of connection with other devices

* the wires are mapped on independent grid paths so that:
* these paths are edge-disjoint;
* there are no “knock-knees”
* these paths do not cross any mapping of a node that is not
an extreme of the corresponding wire.

Aim: minimizing the volume and keeping wires short.

©

3D LAYOUT PROBLEM (3)

The students interested in this topic can look at:

- L. Torok and I. Vrto. Layout Volumes of the Hypercube. Proc.

Graph Drawing ’04.
- T.C. and A. Massini. Three Dimensional Layout of Hypercube
Networks. Networks 47, 2006.



