
§ This layout has been presented by G. Even and S. Even
[’00], and it is based on the notion of Layered Cross
Product

§Def. A layered graph of l+1 layers G=(V0, V1, …, Vl, E)
consists of l+1 layers of nodes; Vi is the (non-empty) set
of nodes in layer i; E is a set of directed edges: edge
(u,v) connects two nodes of two adjacent layers, that is,
if u lies on layer i then v lies on layer i+1.
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§Def. [Even & Litman ’92] The Layered Cross Product (LCP)
of two layered graphs of l+1 layers each,
G1=(V0

1, V1
1, …, Vl

1, E1) and G2=(V0
2, V1

2, …, Vl
2, E2), is a

layered graph of l+1 layers, G=(V0,V1, …,Vl, E), where:

§ For every i=0, …, l, Vi = Vi
1´Vi

2 (i.e. each layer is the
cartesian product of the corresponding layers in G1

and G2);

§ There is an edge (u,v) in G connecting nodes (u1,u2)
and (v1,v2) iff (u1,v1) and (u2,v2) are edges in G1 and G2,
respectively.
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(d,4)

Even and Litman proved that
many well known topologies
are the LCP of simple
structures (e.g. trees).

Namely, the butterfly network
is the LCP of two binary trees,
one of them is upward and the
other one is downward.
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Exemples of LCP The Projection Methodology (PM):

§ Let G1 and G2 two layered graphs of l+1 layers each
and let G denote their LCP. A layout of G is obtained
with the PM as follows:
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The Projection Methodology (contd):

§ Consider a cube and draw the graph G1 on the xy face so that
§ (a) the y-coordinate of every node u e Vi

1 equals i
§ (b) the x-coordinate of every node is an integer.

§ Similarly, draw the graph G2 on the yz face

§ …
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The Projection Methodology (cntd):

§ … A three-dimensional drawing of the LCP G is
constructed in the cube as follows: 
§ if uÎVi

1 is drawn in coordinates (xu, i, 0) and vÎVi
2 is

drawn in coordinates (0, i, zv), then the coordinates of
node (u,v)ÎVi are (xu, i, zv).

In other words, the nodes of G are the intersections
between the lines orthogonal to plane xy and
passing through nodes of G1 and the lines
orthogonal to plane yz
and passing through nodes of G2.

§ A 2D drawing of G is obtained
by projecting the 3D drawing to 
the xz plane. 

 

Obs. It is possible to avoid to construct the 3D
representation by immediately using the prolongations
on plane xz of the projections of nodes in layer i of G1 on
the x axis and of node in layer i of G2 on the z axis,
i=0,…,l
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§ The PM may produce layouts that do not satisfy the

constraints required by the Thompson model.
§ For example, the drawing above is a grid drawing but it

is not an orthogonal drawing.

§ We now describe how rectilinear layouts of G can be
obtained via the PM. First, we formalize necessary and
sufficient conditions:
§ for the edges of the xz projection of G to be along grid

paths,
§ for nodes to be mapped to different grid points, and
§ for not using any grid edge more than once.
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Four types of edges in the product graph G:
1. The product of two diagonal edges yields a diagonal

edge;
2. The product of a vertical edge and a diagonal edge

yields a vertical edge;
3. The product of a diagonal edge and a vertical edge

yields a horizontal edge;
4. The product of two vertical edges

yelds a single grid point.
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In order to get a feasible layout through the PM, we
have to impose that the product of either two diagonal
edges or two vertical edges never occurs.

More precisely:

1. The PM generates a layout of G in which the edges are
grid lines if and only if the drawings of G1 and G2 on the
faces of the cube satisfy the following condition: For
every edge e e E, exactly one of its factor is drawn
diagonally.

This claim avoids overlappings of nodes of the same
layer, too.
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We need to impose that nodes in different layers do
not overlap:

2. The PM generates a layout of G in which at most one
node is mapped to each grid point if and only if the
sets{(xu, zv): u Î Vi

1 e v Î Vi
2} are disjoint, for each i=0,

…, l.
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Consider now two diagonal edges (a,b) and (c,d) in G1;
the coordinates of nodes a, b, c, d are:

§ node a: (xa, i, 0);
§ node b: (xb, i+1, 0);
§ node c: (xc, j, 0);
§ node d: (xd, j+1, 0).

We say that these two edges are consistent if the open
intervals (xa, xb) and (xc, xd) are disjoint.
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3. The PM generates a layout of G in which no grid edge is
used twice if and only if for every two inconsistent edges of
one of the multiplicands the following condition holds:

The two edges are not in the same layer of the
multiplicand, and
on the two layers in which they appear, there are no
(straight) edges of the other multiplicand which are
collinear.
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Inconsistent edges on the same layer

 

Inconsistent edges on different layers

In order to produce a feasible layout, we need to impose
that all the three claims are satisfied.

Let us consider the Claims one by one:
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1. The PM generates a layout of G in which the edges
are grid lines if and only if the drawings of G1 and G2

on the faces of the cube satisfy the following condition:
For every edge e e E, exactly one of its factor is drawn
diagonally.

A solution is to double the number of edge levels so
that edges in the drawing of G1 are diagonal in odd
layers and straight in the even layers, while the edges
in the drawing of G2 are straight in the odd layers and
diagonal in the even layers.
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The doubling of the number of edge levels is achieved
by stretching each edge of the two multiplicands to
become a path of two edges.

In this way we simulate the creations of edge bends.
53

 



2. The PM generates a layout of G in which at most one
node is mapped to each grid point if and only if the
sets{(xu, zv): u Î Vi

1 e v ÎVi
2} are disjoint, for each i=0, …, l.

A simple way to guarantee that this condition will hold is
to make sure that no two nodes in the drawing of G1 (G2),
except for the two end-points of the same straight edge,
share the x-coordinate (z-coordinate).

This is always possible if we opportunely enlarge the
drawings of the two factors.
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3.The PM generates a layout of G in which no grid edge is
used twice if and only if for every two inconsistent edges
of one of the multiplicands the following condition holds:

§ The two edges are not in the same layer of the 
multiplicand, and 

§ on the two layers in which they appear, there are no 
(straight) edges of the other multiplicand which are 
collinear. 

This condition is harder to enforce and is a severe
limitation on this technique. For this reason, we limit to
networks, each of which is the LCP of two trees.
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The butterfly network is the LCP of two binary trees, one
drawn upward and one drawn downward. (We dedicate a
column to each vertex to prevent vertices of the layout
from colliding.)

Proceed as follows:
§ Draw one tree next to the xy plane and the other next to

the yz plane
§ Construct their LCP in 3D inside the cube, in such a

way that the two trees are the projections of the
resulting butterfly on the xy and yz planes

§ The projection of this 3D figure on the floor is a planar
layout of the butterfly
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This layout has the following properties:
§ It’s symmetric;
§ Its height is H=2(N-1);
§ Its width is W=2(N-1);
§ Its area is 4N2+o(N2);
§ Input and output nodes are not on the boundary

(negative property…)
§ All the edges on the same layer has the same length.
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§ WISE - PROs:
§ relatively small area
§ It “looks like” a butterfly
§ Input/output nodes on the boundary

§ WISE - CONs:
§ knok-knees
§ “slanted” grid

§ EVEN & EVEN - PROs:
§ It eliminates all the flaws

§ EVEN & EVEN - CONs:
§ Larger area
§ input/output nodes inside the layout
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With the aim of optimizing the layout area, other layout
algorithms have been proposed:

§ Dinitz [’98] proves that the area of the Even & Even
layout can me decreased by means of some local
adjustments, so to achieve area 11/6
N2+o(N2)

§ Later, Avior et al. [’98] prove that any butterfly layout
cannot have area smaller than N2 + o(N2) if “slanted”
drawing is not allowed, and they provide an
algorithm producing a layout of optimal area.
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Finally, Dinitz et al. [’99] prove that, if a “slanted”
drawing is allowed, area 1/2 N2+o(N2) is necessary
and sufficient.

These works definitively close the optimal area layout
problem of the Butterfly network.
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OPTIMAL AREA LAYOUT 
OF THE BUTTERFLY NETWORK
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§ The two papers that provide an optimal area layout
base their results on the following lemma:

Lemma: For any non-negative integers j, k, 0≤j≤j+k≤n,
the subgraph of the n-dim. Butterfly induced by the
nodes of levels j, j+1, …, j+k is the disjoint union of 2n-k

copies of k-dimensional butterflies.

§ In particular,if j=0 and k=n-1:
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§ Hence, an (n-1)-dimensional Butterfly can be built as a
pair of (n-2)-dim. Butterflies connected by one node
layer and one edge layer.

§ If we cut out the input and output nodes from an n-dim.
Butterfly, we get:
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§ Each one of 
these (n-2)-dim. 
Butterflies can 
be, in turn, cut
into many
smaller
butterflies:
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The previous layout can be better specified as follows:
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Each rectangle contains a Butterfly that can be represented,
either horizontally or vertically, layer by layer as follows:

67

Obs.: this layout is far from being optimal; nevertheless it
allows to produce a final optimal layout.

It remains to connect the small rectangular butterflies:
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In the case of slanted layout, it can be bent along the line:
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§ It is possible to prove tight lower and upper bounds on
the layout area for both the models (usual and slanted).

§ The interested students can look at:
§ A. Avior, T.C., S. Even, A. Litman, A.L. Rosenberg: A Tight

Layout of the Butterfly Network. Theory of Computing
Systems 31, 1998.

§ Y. Dinitz, S. Even, M. Zapolotsky: A Compact Layout of
the Butterfly. J. of Interconnection Networks 4, 2003.
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• Widely used for parallel computation, thanks to its
nice properties (high regularity, logarithmic
diameter, good fault tolerance, …).

• Def. The n-dimensional Hypercube, Qn, has N=2n

nodes and ½n2n edges. Each node is labeled with
an n-bit binary string, and two nodes are linked
with an edge iff their binary strings differ in
precisely one bit.

• The edges of the hypercube can be naturally
partitioned according to the dimensions that they
traverse and Qn: Qn-1º Qn-1…
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Qn can be built by joining with an edge nodes in two different
copies of  Qn-1 if they have the same label.
Obs.: These edges form a perfect matching.

Q2

00 01

10 11

000

Q3

001

010
011

100 101

110 111

Q4

0000 0001

0010
0011

0100 0101

0110 0111

1000 1001

1010
1011

1100 1101

1110
1111
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Property: Qn has diameter log N.
Proof. Any two nodes
u=u1u2…ulogN and v=v1v2…vlogN are connected by the path:
u1u2…ulogNèv1u2…ulogNèv1v2…ulogNè…èv1v2…vlogN
The claim trivially follows. n

000

Q3

001

010
011

100 101

110 111
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Reminder: The bisection width of a network is the
minimum number of edges one has to cut to disconnect
the network into two equally sized subnetworks.

Property. BW(Qn)=N/2.

Q4

0000 0001

0010
0011

0100 0101

0110 0111

1000 1001

1010
1011

1100 1101

1110
1111

Proof. (idea) the red edges
(=edges in a single
dimension) divide the
hypercube into two equally
sized subnetworks; they are
N/2 and it is not possible to
cut a smaller number of
edges to get the same result.
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Th. A lower bound on the layout area of a network is the
square of its bisection width (already proved).

Cor. Each layout of Qn has area at least N2/4.

In the following: layout with area 4/9N2+o(N2), that hence
is almost optimal (far from the lower bound by a factor
of 1.7) [Yeh,Varvarigos, Parhami,‘99].

§ Reminder: In a collinear layout all nodes are placed on
the same line. Instead of computing its area, it is usual to
count the number of necessary tracks.

§ We start with a 2-dim. Hypercube, and inductively move
to hypercubes of higher dimensions:
§ Q2:
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00 01

10 11

00 01 10 11

2 tracks



§ If n odd: Assume that we have a collinear layout for
Qn-1 that requires f(n-1) tracks: Qn
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2 tracks

001 011 101 111000 010 100 110

2 tracks 1 track

Tot. f(n)=2f(n-1)+1 tracks

§ If n is even: To obtain the collinear layout of Qn we
start with the layouts of four Qn-2s:
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Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

f(n+2)=4f(n)+2

§ Th. The number of tracks required for the collinear
layout of Qn is 2/3N (where N=2n is the number of
nodes).

§ Proof.We solve the following recurrence equation:
§ f(n)=2f(n-1)+1 if n odd
§ f(n)=4f(n-2)+2 if n even
§ f(2)=2
Even case:
f(n)=4f(n-2)+2=42f(n-4)+4x2+2=
=43f(n-6)+25+23+2=…=
=…when n-2k=2 iff k=(n-2)/2…=
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4k f (n− 2k)+ 2 ⋅ 4i
i=0

k−1

∑ =

= 4
n−2
2 f (2)+ 2 4i

i=0

n−2
2
−1

∑ = 2 4i
i=0

n−2
2

∑ ≅ 2 ⋅ 4
n−2
2
+1

3
=
2
3
2n = 2

3
N

(proof cntd)

The odd case is analogous. n

The area of this layout is (2/3N+n) x (nN).

Th. Qn can be laid out in 4/9N2+o(N2) area.

Proof idea. Let n=n1+n2.

Let us use 2n1 copies of the collinear layout of Qn2, each
placed along a row.

We connect the 2n1 nodes that belong to the same column
vertically according to the collinear layout of a Qn1. 81



(proof cntd)

Reminder: Qk needs of

2/32k tracks

# of horiz. tracks (rows) :

2n1 copies x 2/32n2 tracks

Additive height (nodes):

2n1 copies x n2

Total heigth:

2n1 x (2/32n2+ n2)=

2/32n1+n2+n2 2n1

… 82

Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

(proof cntd)

Reminder:

heigth= 2/32n1+n2+n2 2n1

The width is computed
analogously, switching the
roles of n1 and n2.

Total width:

2/32n1+n2+n1 2n2
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Area=(2/3N+n1 2n2)(2/3N+n2 2n1)=
=4/9N2+o(N2) if n1 and n2 are o(N), e.g. if n1=Θ(n2)�n/2.

84
3D LAYOUT
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§ The diffusion of the 3D layout has increased in the last
thirty years.

§ The topology is lain out on a series of slices.
§ Further optimization of the wire length and number of

bends
§ Less silicon used.
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Def. A 3D layout of a topology G is a 1-1 function between
G and the 3D grid such that:
• the nodes are mapped into grid points

• it is better if the nodes lie on the external slice in order to
minimize: energy consuming, production of heat and
difficulty of connection with other devices

• the wires are mapped on independent grid paths so that:
• these paths are edge-disjoint;
• there are no “knock-knees”
• these paths do not cross any mapping of a node that is not
an extreme of the corresponding wire.

Aim: minimizing the volume and keeping wires short.
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The students interested in this topic can look at:
- L. Torok and I. Vrto. Layout Volumes of the Hypercube. Proc.

Graph Drawing ’04.
- T.C. and A. Massini. Three Dimensional Layout of Hypercube

Networks. Networks 47, 2006.
-> possible lessons

87


