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THE THOMPSON’S MODEL

§ The interconnection topology layout problem
arises from the problem of producing efficient
VLSI (Very Large Scale Integration) layouts on a
silicon board.

§ It was born in the ’40s, but it got a significative
interest only relatively recently, when the
technology has allowed to layout circuits in two
and three dimensions at reasonably low price.
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Two exemples of VLSI circuits:
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Model the circuit as a graph (nodes = ports, switches, etc.
and edges = wires).

There is a tight relation between the VLSI layout and the
graph drawing.
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Drawing G of a graph G: it is a function mapping
each node v in a distinct point G(v), and each
edge (u,v) in an open Jordan curve G(u,v) not
crossing any point that is the mapping of a node,
starting in G(u) and arriving in G(v).

The VLSI technology production imposes many
constraints; in particular, we have to keep into account
the following:

§ …

§ … the device pressing the connections can only
approximate slanting lines by tiny horizontal and
vertical segments (Þorthogonal drawing);
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Orthogonal drawing: drawing of a 
graph where edges are represented
as broken lines whose segments are 
horizontal or vertical (parallel to the 

coordinate axes) 

§ In order to avoid interference, it is necessary to keep
wires far enough (Þgrid drawing);
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Grid drawing: drawing of a graph so that all
nodes, crosses and bends of the edges are
put on grid points
(scaling property - resolution)

§ Wires cannot cross; in order to avoid crossings, it is
possible to route the crossing wires on the two separate
sides of the board, introducing small “holes” trepassing
the board from a side to the other one; the number of
such holes must be small, as their realization is rather
expensive (Þcrossing number minimization)

§ …
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§ The silicon is very expensive; so the layout must have
small area (Þarea minimization).

§ Wires should not be too long, as the propagation
delay is proportional to their length; in case of
layered topology, wires in the same layer should have
(approximately) the same length, so to avoid
synchronization problems

(Þedge length minimization).

9

In 1980 Thompson introduced a model that is
consistent with all the mentioned constraints:

the layout of a topology G is a plane representation on
a bunch of unit distance horizontal and vertical traces
that maps:

…
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§ nodes of G in the intersecion points of the traces,
§ edges of G in disjoint paths constituted by

horizontal and vertical segments on traces; such
paths cannot cross nodes that are not their extremes
and they can cross each other only in
corrispondence of trace intersection points;

§ Overlappings (edge-edge) are not allowed
§ Node-edge crosses are not allowed
§ “knock-knees” are not allowed

11

12

ORTOGHONAL GRAPH DRAWING



§ Def. An orthogonal grid drawing of a graph G=(V,E) is a
bijection mapping:
§ nodes v Î V on plane points G(v) at integer coordinates
§ edges (v,w) Î E on not overlapping paths so that the

images of their extremes G(v) and G(w) are connected
by the corresponding paths.

§ These paths are constituted by horizontal and vertical
segments; the possible bends have integer coordinates

§ Obs. only graphs with degree £ 4 can be correctly drawn.
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§ So, the interconnection topology layout is an
orthogonal grid drawing of the corresponding graph
with the aim of minimizing the area, the number of
crossings and the wire length.

§ There is a huge literature in the GRAPH DRAWING
area…

§ Shall we use the known algorithms for orthogonal grid
drawing in order to solve the layout problem?
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§ No: these algorithms guarantee some bounds on the
optimization functions that hold FOR EACH input graph
having the required input hypotheses

§ Interconnection topologies are very structured graphs
(usually regular, symmetric, recursively built, …) and,
exploiting these properties, it is possible to get better
results.
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§ Graph drawing algorithms get a graph in input and
draw it on the plane.

§ Layout algorithms are designed for a single special
interconnection topology and so they get only its
dimension in input.

§ Obs. Improving an optimization function by “only” a
constant factor is an important issue (especially the
area): if a layout occupies ½ of the area of another one,
it will cost the half!
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§ The Thompson model [Thompson ‘79] requires that the
wires coming out of each processing element are at most
4 (6 in 3D)

What if the degree is higher? (end of the ’90s)

non-constant node degree model:
§ a node of degree d occupies a square of side Θ(d)

(here deg is n-1)
§ the wires can run either horizontally or

vertically along grid lines.
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§ Layout proposed by Yeh and Parami [98]

§ Collinear layout with area n4/4 - optimal

§ In a collinear layout all nodes are placed on the same
line. Instead of computing its area, it is usual to count the
number of necessary tracks.
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To obtain the collinear layout of the complete graph:

§ let a link be type-i if it connects two nodes whose labels
differ by i; so, the n(n-1)/2 links can be classified into
types 1, 2, …, n-1,and there are n-i type-i links.

§ …
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§ …

§ place the n nodes, labeled 1 through n, along a row;

§ place the type-1 links in one track,

§ place the type-2 links in two tracks, where links
connecting odd nodes are put in one track and links
connecting even nodes are put in the other one

§ place the type-i links in min(i, n-i) tracks
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§ Total number of tracks in this layout:
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COLLINEAR LAYOUT (5)
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Fig. 1. A colinear layout for the g-node complete graph Kg. 

Theorem 2.1. The number of tracks required for the 
colinear layout of an N-node simple graph is at most 
lN2/41. 

This upper bound is 25% smaller than the one given 
in [7, Theorem 11. The above number of tracks leads 
to an area of N(N - 1) LN2/4J x N4/4. 

2.2. Optimal 20 layouts of complete graphs 

Although the method introduced in the previous 
subsection leads to the smallest possible number of 
tracks for the colinear layout of a complete graph, 
layouts with smaller area can be obtained using 2D 
layouts. Based on the previous colinear layout, we first 
derive an area-efficient layout for directed complete 
graphs, where each pair of nodes are connected by 
two directed edges. Without loss of generality, we 
assume that N = ml x rn2 for some pair of integers 
ml,m2 = O(a). 

To obtain an area-optimal layout, we put the N 
nodes of the complete graph, labeled (i, j) for i = 
1,2,..., ml, j = 1,2 ,..., m2, on an ml x m2 grid. 
Two neighboring rows are separated by 2ml Lrng/4] 
tracks while two neighboring columns are separated 
by 2mz Lm:/4] tracks. We call a link from the source 
node (il, jl) to the destination node (iz, j2) a type- 
(i~,jt,j2-jt)link.Ifit=i2orjt==j2,wecanroute 
the link as in the colinear layout. Otherwise, we first 
route it from the source node to the vicinity of the 
upper right comer of the turning node (il, j2) along 

a horizontal track, and from there to the destination 
node (i2, j2) along a vertical track. Recall that we need 
min(k, m2 - k) tracks for all the m2 - k type-k links 
in the colinear layout of an undirected K,,. Since 
m 1 links go from the node (il , jt) to node (il, j2) 
as the turning or destination node, and vice versa, we 
can expand a track in the colinear layout of a k,, to 
2m 1 tracks to accommodate the horizontal segments of 
the 2ml directed links, leading to 2ml Lrnz/4] tracks 
above each row of nodes. 

We next show that the vertical segments of all 
the links to the immediate right of a column can be 
placed in 2rnzLrni/4] tracks. We present a possible 
arrangement as follows. We place all the type-(x, y, z) 
links within the bundle (i 1, k), if y = jt and z = k or 
-k for some positive integers il and k, for all integers 
x = 1,2,3 ,..., ml. In other words, links are put 
within the same bundle if their source nodes belong to 
the same column il and the difference between their 
row numbers of the source and destination is the same 
(i.e., equal to k or -k). There are m2(m 1 - 1) bundles 
between a pair of columns. Bundle (i 1, k) can be laid 
out using 2 min(k, m 1 - k) successive tracks, which is 
similar to the layout for two groups of type-k links in 
the colinear layout of a K,, . More precisely, a link is 
placed in the first half of the bundle to which it belongs 
if [(il - 1)/k] is even and placed in the second half 
otherwise. Within the half of bundle, a link is placed 
in the lth track if i 1 mod k = 1. Note that we place the 
vertical segments of links of type-(it , jt , k) and type- 
(il, jt , -k) alternatively along a vertical track when 

substituting 
j=n-i

Def. : The bisection width of a network is the minimum
number of edges one has to cut to disconnect the
network into two equally sized sub-networks.

Property. The bisection width of the complete graph is
n2/4+o(n2).

Th. A lower bound on the number of tracks in the collinear
layout of a network is its bisection width (to be proved
later).

Cor. A lower bound on the number of tracks in the
collinear layout of the complete graph is n2/4+o(n2).
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§ Note. The area of the collinear layout is:
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§ Although the collinear layout leads to the smallest possible
number of tracks, layouts with smaller area can be obtained.

§ An area efficient layout for complete graphs is based on the
previous collinear layout.

§ W.l.o.g. n=m1 xm2,wherem1 andm2 are Θ(√n)
§ Each node can be labeled (i,j) with i=1,…,m1 and j=1,…,m2.
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§ Put node (i,j) at coordinates (i,j) on anm1 xm2grid.

§ Without entering into details:
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Fig. 2. A 2D layout for an undirected complete graph Kg. 

k < ml /2 to avoid overlapping. By arranging links 
according to the above rules, the vertical segments of 
all the 2m2(ml -k) type-(x, y, k) and type-(x, y, -k) 
links,x=l,2,3 ,..., mt,y=1,2,3 ,..., m2,canbe 
placed in 2m2 min(k, ml - k) tracks. As a result, the 
total number of vertical tracks required is equal to 2m2 
times the required number of tracks Lm:/4J for the 
colinear layout of a k,, ; that is 2m2 Lrnf/41. 

Since a node occupies a square of side rnlrn2 - 1, 
the area required for the above 2D layout of the 
directed KN is given by 

ml(2mt l&41 + 17211112 - 1) 

x m2(2m2 LmT/4J + ml1712 - 1) 

= N4/4 + 0(N3.5). 

For an undirected KN , where each pair of nodes are 
connected by an edge only, the required area can be 
reduced to N4/16 + 0(N3.5) by properly removing 
half of the tracks in both horizontal and vertical 
directions. One of the possible methods is to remove 
the links within the second half of each of the bundles 
and, their horizontal segments as well as half of the 
links whose sources and destinations have the same 
row or column numbers. Fig. 2 shows a resultant 
2D layout for an undirected KS. Note that there are 
12 tracks between 2 neighboring rows or columns in 

the layout for a directed Kg; while after the removal 
of the second halves of bundles, there are only 6 
vertical tracks left between two neighboring columns, 
and there are 10,2, and 6 horizontal tracks left above 
the lst, 2nd, and 3rd rows, respectively, in the layout 
for an undirected K9. 

Theorem 2.2. An N-node complete graph can be laid 
out in N4/16 + o(N4) area. 

These layout areas are larger than their respective 
lower bounds by a factor of 1 + o(1) and are thus 
quite close to being strictly optimal. In the following 
subsections, we will show that the optimal layouts for 
complete graphs can be used to derive efficient layouts 
for star graphs. 

3. Optimal layouts for star graphs 

An n-dimensional star graph, n-star, is a symmetric 
graph that has N = n! nodes of degree n - 1 [2]. Each 
node in an n-star is assigned a label, which is a distinct 
permutation of the set of n symbols { 1,2,3, . . . , n}. 
Two nodes are connected with a dimension-i link, 
2 < i 6 n, if and only if the label of one node can 
be obtained from the other by interchanging the first 

Area = n
4

16
+o(n4 )

Th. A lower bound on the layout area of a network is the
square of its bisection width.

Reminder. The bisection width of the complete graph is
n2/4+o(n2).

Cor. A lower bound on the layout area of the complete
graph is n4/16+o(n4).
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Let us prove the theorem:

Th. [Thompson ‘79] A lower bound on the layout area of a
network is the square of its bisection width.

Proof. Suppose that the bisection width of a network G can
be counted when partitioning its nodes in two sets of k
and n-k nodes, respectively.
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layout of G

n/2

n/2

width at least as large as 
the bisection width…
the same holds for the 
height… n

n/2
n/2



29

 

Def. (reminder) Let N=2n (and n=log N);
an n-dimensional Butterfly is a layered
graph having N (n+1) nodes (n+1 layers,
with 2n nodes each) and 2Nn edges.

The nodes are labeled with a pair (w, i),
where i is the layer of the node and w is an n
bit binary number indicating the row of the
node.

Two nodes (w, i) and (w’, i’) are adjacent iff
i’=i+1 and:
§w=w’ (straight edge) or
§w e w’ differ in exactly the i-th bit (cross
edge).
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Layout proposed by D.S.Wise [’81]
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He writes: 
“This paper offers a result that can be described as a picture. 
[…] The perceptive reader may stop here, since the remainder of 
this paper only describes it.”

This layout has a property that is very important in a
layered topology:

§ All the wires in the same layer are of equal length.

§ Nevertheless, this length grows exponentially up
with the layer.
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§ The longest path length from any input to any output is linear in N
(namely, 2(N-1)).

§ Indeed:
§ All the paths have the same length.
§ For the sake of simplicity, consider the path from the

upper-left node to the lower-right node.
§ The length of this path coincides with the diagonal of the

square having side Ö2 (N-1), so it is
2(N-1).

33

 

§ The layout is performed on the two sides of the silicon
board, so it can be considered a 2-layer layout; one layer
is composed of all diagonal wires running "north-east"
(from lower-left to upper-right) -red lines- and the other
layer is composed of "north-west” wires (from lower-
right to upper-left) -black lines.
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§ PROs:
§ Good area : Ö2 (N-1) ´ Ö2 (N-1)= 2N2+o(N2)
§ Same wire length on each layer; this is not true in every

layout: in the classical drawing of the butterfly network,
for example, the straight-edges on the last layer have
unit length while the cross-edges on the same layer
have linear length in the input size N; this is extremely
bad, because synchronization of the information flow
goes lost;

§ The input and output nodes lie on the boundary of the
layout, and this can be required by some applications.
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§ CONs:

§ “slanted” lines, so that the area of the layout is measured
by a rectangle whose sides are not parallel to coordinate
axes but lie at 45°; if we follow the standard definition of
layout area, it becomes 2(N-1) ´ 2(N-1)= 4N2+o(N2);
indeed, the circumscribed square with sides parallel to
the coordinate axes has side equal to to the length of the
path from the upper-left node to the lower-right node,
that is 2(N-1);

§ …
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§ CONs (cntd):

§ … it is a ‘cheating’ layout, indeed the “knock-knees”
are not avoided but arranged in the layout thanks to
some devices that have no null area and so enlarge
the layout area.

§ The Wise layout “looks like” the usual representation.
Nevertheless, in order to get the Wise layout from the
usual representation, nodes must be permuted:
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