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THE THOMPSON’S MODEL 
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THOMPSON’S MODEL (1) 

! The interconnection topology layout 
problem arises from the problem of 
producing efficient VLSI (Very Large 
Scale Integration) layouts on a silicon 
board.  

! It was born in the ’40s, but it got a 
significative interest only relatively 
recently, when the technology has allowed 
to layout circuits in two and three 
dimensions at reasonably low price. 
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THOMPSON’S MODEL (2) 

Two exemples of VLSI circuits: 

Intel 2004 
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Intel 2013 



THOMPSON’S MODEL (3) 
Model the circuit as a graph (nodes = ports, switches, 

etc. and edges = wires).  
There is a tight relation between the VLSI layout 

and the graph drawing. 
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Drawing Γ of a graph G: it is a function mapping 
each node v in a distinct point Γ(v), and each edge 
(u,v) in an open Jordan curve Γ(u,v) not crossing any 
point that is the mapping of a node, starting in Γ(u) 
and arriving in Γ(v).  

  The VLSI technology production imposes many 
constraints; in particular, we have to keep into 
account the following: 

! … 
 
 
  

THOMPSON’S MODEL (4) 

! … the device pressing the connections can only 
approximate slanting lines by tiny horizontal and 
vertical segments (⇒orthogonal drawing); 
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Orthogonal drawing: drawing of a 
graph where edges are represented as 

broken lines whose segments are 
horizontal or vertical (parallel to the 

coordinate axes)  

THOMPSON’S MODEL (5) 

! In order to avoid interference, it is necessary to 
keep wires far enough (⇒grid drawing); 
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Grid drawing: drawing of a graph so that all 
nodes, crosses and bends of the edges are put 
on grid points  
(scaling property - resolution) 

  

THOMPSON’S MODEL (6) 

! Wires cannot cross; in order to avoid crossings, it 
is possible to route the crossing wires on the two 
separate sides of the board, introducing small 
“holes” trepassing the board from a side to the 
other one; the number of such holes must be 
small, as their realization is rather expensive 
(⇒crossing number minimization) 

! … 
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THOMPSON’S MODEL (7) 

! The silicon is very expensive; so the layout must 
have small area (⇒area minimization). 

 
! Wires should not be too long, as the propagation 

delay is proportional to their length; in case of 
layered topology, wires in the same layer should 
have (approximately) the same length, so to 
avoid synchronization problems 

   (⇒edge length minimization).  
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THOMPSON’S MODEL (8) 

 In 1980 Thompson introduced a model that is  
consistent with all the mentioned constraints: 
 the layout of a topology G is a plane 
representation on a bunch of unit distance 
horizontal and vertical traces that maps: 

… 
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THOMPSON’S MODEL (9) 

!  nodes of G in the intersecion points of the 
traces,  

!  edges of G in disjoint paths constituted by 
horizontal and vertical segments on traces; 
such paths cannot cross nodes that are not 
their extremes and they can cross each other 
only in corrispondence of trace intersection 
points;  

!  Overlappings (edge-edge) are not allowed 
!  Node-edge crosses are not allowed 
!   “knock-knees” are not allowed 

 

11 

12 

ORTOGHONAL GRAPH DRAWING 



ORTHOGONAL GRID DRAWING (1) 

! DEF. An orthogonal grid drawing of a graph 
G=(V,E) is a bijection mapping: 
!  nodes v ∈ V on plane points Γ(v) at integer coordinates  
!  edges (v,w) ∈ E on not overlapping paths so that the 

images of their extremes Γ(v) and Γ(w) are connected by 
the corresponding paths.  

!  These paths are constituted by horizontal and vertical 
segments; the possible bends have integer coordinates 

! Obs. only graphs with degree ≤ 4 can be correctly 
drawn. 
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! So, the interconnection topology layout is an 
orthogonal grid drawing of the corresponding 
graph with the aim of minimizing the area, 
the number of crossings and the wire length.  

! There is a huge literature in the GRAPH 
DRAWING area… 

! Shall we use the known algorithms for 
orthogonal grid drawing in order to solve the 
layout problem? 

ORTHOGONAL GRID DRAWING (2) 
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! No: these algorithms guarantee some bounds 
on the optimization functions that hold FOR 
EACH input graph having the required input 
hypotheses 

! Interconnection topologies are very structured 
graphs (usually regular, symmetric , 
recursively built, …) and, exploiting these 
properties, it is possible to get better results.  

ORTHOGONAL GRID DRAWING (3) 
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! Graph drawing algorithms get a graph in input 
and draw it on the plane. 

! Layout algorithms are designed for a single 
special interconnection topology and so they get 
only its dimension in input. 

! Obs. Improving an optimization function by 
“only” a constant factor is an important issue 
(especially the area): if a layout occupies ½ of the 
area of another one, it will cost the half! 

ORTHOGONAL GRID DRAWING (4) 

16 



COMPLETE GRAPH LAYOUT 
17 
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COLLINEAR LAYOUT (1) 

! The Thompson model [Thompson ‘79] requires that the 
wires coming out of each processing elements are at 
most 4 (6 in 3D) 

   What if the degree is higher? (end of the ’90s) 
    non-constant node degree model: 

!  a node of degree d occupies a square of side �(d) (here 
deg is n-1) 

!  The wires can run either horizontally or vertically 
along grid lines. 
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COLLINEAR LAYOUT (2) 

! Layout proposed by Yeh and Parami [98] 
! Collinear layout with area n2/4 - optimal 
! In a collinear layout all nodes are placed on the 

same line. Instead of computing its area, it is usual 
to count the number of necessary tracks. 
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COLLINEAR LAYOUT (3) 

To obtain the collinear layout of the complete graph: 
!  let a link be type-i if it connects two nodes whose 

labels differ by i; so, the n(n-1)/2 links can be 
classified into types 1, 2, …, n-1, and there are n-i 
type-i links. 

! …  
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COLLINEAR LAYOUT (4) 

! … 
! place the n nodes, labeled 1 through n, along a row; 
! place the type-1 links in one track,  
! place the type-2 links in two tracks, where links 

connecting odd nodes are put in one track and links 
connecting even nodes are put in the other one 

! place the type-i links in min(i, n-i) tracks 
 

1 2 3 4 5 6 
22 

COLLINEAR LAYOUT (5) 

! Total number of tracks in this layout: 
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Fig. 1. A colinear layout for the g-node complete graph Kg. 

Theorem 2.1. The number of tracks required for the 
colinear layout of an N-node simple graph is at most 
lN2/41. 

This upper bound is 25% smaller than the one given 
in [7, Theorem 11. The above number of tracks leads 
to an area of N(N - 1) LN2/4J x N4/4. 

2.2. Optimal 20 layouts of complete graphs 

Although the method introduced in the previous 
subsection leads to the smallest possible number of 
tracks for the colinear layout of a complete graph, 
layouts with smaller area can be obtained using 2D 
layouts. Based on the previous colinear layout, we first 
derive an area-efficient layout for directed complete 
graphs, where each pair of nodes are connected by 
two directed edges. Without loss of generality, we 
assume that N = ml x rn2 for some pair of integers 
ml,m2 = O(a). 

To obtain an area-optimal layout, we put the N 
nodes of the complete graph, labeled (i, j) for i = 
1,2,..., ml, j = 1,2 ,..., m2, on an ml x m2 grid. 
Two neighboring rows are separated by 2ml Lrng/4] 
tracks while two neighboring columns are separated 
by 2mz Lm:/4] tracks. We call a link from the source 
node (il, jl) to the destination node (iz, j2) a type- 
(i~,jt,j2-jt)link.Ifit=i2orjt==j2,wecanroute 
the link as in the colinear layout. Otherwise, we first 
route it from the source node to the vicinity of the 
upper right comer of the turning node (il, j2) along 

a horizontal track, and from there to the destination 
node (i2, j2) along a vertical track. Recall that we need 
min(k, m2 - k) tracks for all the m2 - k type-k links 
in the colinear layout of an undirected K,,. Since 
m 1 links go from the node (il , jt) to node (il, j2) 
as the turning or destination node, and vice versa, we 
can expand a track in the colinear layout of a k,, to 
2m 1 tracks to accommodate the horizontal segments of 
the 2ml directed links, leading to 2ml Lrnz/4] tracks 
above each row of nodes. 

We next show that the vertical segments of all 
the links to the immediate right of a column can be 
placed in 2rnzLrni/4] tracks. We present a possible 
arrangement as follows. We place all the type-(x, y, z) 
links within the bundle (i 1, k), if y = jt and z = k or 
-k for some positive integers il and k, for all integers 
x = 1,2,3 ,..., ml. In other words, links are put 
within the same bundle if their source nodes belong to 
the same column il and the difference between their 
row numbers of the source and destination is the same 
(i.e., equal to k or -k). There are m2(m 1 - 1) bundles 
between a pair of columns. Bundle (i 1, k) can be laid 
out using 2 min(k, m 1 - k) successive tracks, which is 
similar to the layout for two groups of type-k links in 
the colinear layout of a K,, . More precisely, a link is 
placed in the first half of the bundle to which it belongs 
if [(il - 1)/k] is even and placed in the second half 
otherwise. Within the half of bundle, a link is placed 
in the lth track if i 1 mod k = 1. Note that we place the 
vertical segments of links of type-(it , jt , k) and type- 
(il, jt , -k) alternatively along a vertical track when 
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COLLINEAR LAYOUT (6) 

Def. : The bisection width of a network is the minimum 
number of edges one has to cut to disconnect the 
network into two equally sized subnetworks. 

Property. The bisection width of the complete graph is 
n2/4+o(n2). 

Th. A lower bound on the number of tracks in the 
collinear layout of a network is its bisection width. 

Cor. A lower bound on the number of tracks in the 
collinear layout of the complete graph is n2/4+o(n2). 
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ORTHOGONAL LAYOUT (1) 

! Note. The area of the collinear layout is: 
 

 C.-H. Yeh, B. Parhami/Infomtion Processing Letters 68 (1998) 39-45 41 
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Fig. 1. A colinear layout for the g-node complete graph Kg. 

Theorem 2.1. The number of tracks required for the 
colinear layout of an N-node simple graph is at most 
lN2/41. 

This upper bound is 25% smaller than the one given 
in [7, Theorem 11. The above number of tracks leads 
to an area of N(N - 1) LN2/4J x N4/4. 

2.2. Optimal 20 layouts of complete graphs 

Although the method introduced in the previous 
subsection leads to the smallest possible number of 
tracks for the colinear layout of a complete graph, 
layouts with smaller area can be obtained using 2D 
layouts. Based on the previous colinear layout, we first 
derive an area-efficient layout for directed complete 
graphs, where each pair of nodes are connected by 
two directed edges. Without loss of generality, we 
assume that N = ml x rn2 for some pair of integers 
ml,m2 = O(a). 

To obtain an area-optimal layout, we put the N 
nodes of the complete graph, labeled (i, j) for i = 
1,2,..., ml, j = 1,2 ,..., m2, on an ml x m2 grid. 
Two neighboring rows are separated by 2ml Lrng/4] 
tracks while two neighboring columns are separated 
by 2mz Lm:/4] tracks. We call a link from the source 
node (il, jl) to the destination node (iz, j2) a type- 
(i~,jt,j2-jt)link.Ifit=i2orjt==j2,wecanroute 
the link as in the colinear layout. Otherwise, we first 
route it from the source node to the vicinity of the 
upper right comer of the turning node (il, j2) along 

a horizontal track, and from there to the destination 
node (i2, j2) along a vertical track. Recall that we need 
min(k, m2 - k) tracks for all the m2 - k type-k links 
in the colinear layout of an undirected K,,. Since 
m 1 links go from the node (il , jt) to node (il, j2) 
as the turning or destination node, and vice versa, we 
can expand a track in the colinear layout of a k,, to 
2m 1 tracks to accommodate the horizontal segments of 
the 2ml directed links, leading to 2ml Lrnz/4] tracks 
above each row of nodes. 

We next show that the vertical segments of all 
the links to the immediate right of a column can be 
placed in 2rnzLrni/4] tracks. We present a possible 
arrangement as follows. We place all the type-(x, y, z) 
links within the bundle (i 1, k), if y = jt and z = k or 
-k for some positive integers il and k, for all integers 
x = 1,2,3 ,..., ml. In other words, links are put 
within the same bundle if their source nodes belong to 
the same column il and the difference between their 
row numbers of the source and destination is the same 
(i.e., equal to k or -k). There are m2(m 1 - 1) bundles 
between a pair of columns. Bundle (i 1, k) can be laid 
out using 2 min(k, m 1 - k) successive tracks, which is 
similar to the layout for two groups of type-k links in 
the colinear layout of a K,, . More precisely, a link is 
placed in the first half of the bundle to which it belongs 
if [(il - 1)/k] is even and placed in the second half 
otherwise. Within the half of bundle, a link is placed 
in the lth track if i 1 mod k = 1. Note that we place the 
vertical segments of links of type-(it , jt , k) and type- 
(il, jt , -k) alternatively along a vertical track when 

n2

4

n2

n4

4
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ORTHOGONAL LAYOUT (2) 

! Although the collinear layout leads to the smallest 
possible number of tracks, layouts with smaller area 
can be obtained. 

! An area efficient layout for complete graphs is based on 
the previous collinear layout. 

! W.l.o.g. n=m1 x m2, where m1 and m2 are �(√n) 
! Each node can be labeled (i,j) with i=1, …, m1 and j=1, 

…, m2. 
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ORTHOGONAL LAYOUT (3) 

! Put node (i,j) at coordinates (i,j) on an m1 x m2 grid. 
! Without entering into details: 

 
42 C.-H. Yeh, B. Parhmni /Information Processing Letters 68 (1998) 39-45 

bundk 

bundk 

Fig. 2. A 2D layout for an undirected complete graph Kg. 

k < ml /2 to avoid overlapping. By arranging links 
according to the above rules, the vertical segments of 
all the 2m2(ml -k) type-(x, y, k) and type-(x, y, -k) 
links,x=l,2,3 ,..., mt,y=1,2,3 ,..., m2,canbe 
placed in 2m2 min(k, ml - k) tracks. As a result, the 
total number of vertical tracks required is equal to 2m2 
times the required number of tracks Lm:/4J for the 
colinear layout of a k,, ; that is 2m2 Lrnf/41. 

Since a node occupies a square of side rnlrn2 - 1, 
the area required for the above 2D layout of the 
directed KN is given by 

ml(2mt l&41 + 17211112 - 1) 

x m2(2m2 LmT/4J + ml1712 - 1) 

= N4/4 + 0(N3.5). 

For an undirected KN , where each pair of nodes are 
connected by an edge only, the required area can be 
reduced to N4/16 + 0(N3.5) by properly removing 
half of the tracks in both horizontal and vertical 
directions. One of the possible methods is to remove 
the links within the second half of each of the bundles 
and, their horizontal segments as well as half of the 
links whose sources and destinations have the same 
row or column numbers. Fig. 2 shows a resultant 
2D layout for an undirected KS. Note that there are 
12 tracks between 2 neighboring rows or columns in 

the layout for a directed Kg; while after the removal 
of the second halves of bundles, there are only 6 
vertical tracks left between two neighboring columns, 
and there are 10,2, and 6 horizontal tracks left above 
the lst, 2nd, and 3rd rows, respectively, in the layout 
for an undirected K9. 

Theorem 2.2. An N-node complete graph can be laid 
out in N4/16 + o(N4) area. 

These layout areas are larger than their respective 
lower bounds by a factor of 1 + o(1) and are thus 
quite close to being strictly optimal. In the following 
subsections, we will show that the optimal layouts for 
complete graphs can be used to derive efficient layouts 
for star graphs. 

3. Optimal layouts for star graphs 

An n-dimensional star graph, n-star, is a symmetric 
graph that has N = n! nodes of degree n - 1 [2]. Each 
node in an n-star is assigned a label, which is a distinct 
permutation of the set of n symbols { 1,2,3, . . . , n}. 
Two nodes are connected with a dimension-i link, 
2 < i 6 n, if and only if the label of one node can 
be obtained from the other by interchanging the first 

Area = n
4

16
+o(n4 )
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ORTHOGONAL LAYOUT (4) 

Th. A lower bound on the layout area of a network is the 
square of its bisection width. 

Reminder. The bisection width of the complete graph is 
n2/4+o(n2). 

Cor. A lower bound on the layout area of the complete 
graph is n4/16+o(n4). 
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ORTHOGONAL LAYOUT (5) 

Let us prove the theorem: 
Th. [Thompson ‘79] A lower bound on the layout area of a 

network is the square of its bisection width. 
Proof. Suppose that the bisection width of a network G 

can be counted when partitioning its nodes in two sets 
of k and n-k nodes, respectively. 

layout of G 

n/2 

n/2 

width at least as large as 
the bisection width… 
the same holds for the 
height… 

   QED 

n/2 
n/2 



BUTTERFLY LAYOUT 
29 

BUTTERFLY NETWORK (MEMORANDUM) 

Def. (reminder) Let N=2n (and n=log N);  
an n-dimensional Butterfly is a layered 
graph having N (n+1) nodes (n+1 
layers, with 2n  nodes each) and 2Nn 
edges.  

  The nodes are labeled with a pair (w, i), 
where i is the layer of the node and w is 
an n bit binary number indicating the 
row of the node. 
 Two nodes (w, i) and (w’, i’) are adjacent 
iff i’=i+1 and: 

! w=w’ (straight edge) or 
! w e w’ differ in exactly the i-th bit 

(cross edge). 
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WISE LAYOUT (1) 
Layout proposed by D.S.Wise [’81]  
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He writes:  
“This paper offers a result that can be described as a picture. 
[…] The perceptive reader may stop here, since the remainder of 
this paper only describes it.”  
 

WISE LAYOUT (2) 

 This layout has a property that is very 
important in a layered topology: 

! All the wires in the same layer are of equal 
length.  

! N e v e r t h e l e s s , t h i s l e n g t h g r o w s 
exponentially up with the layer. 
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WISE LAYOUT (3) 

! The longest path length from any input to any 
output is linear in N (namely, 2(N-1)).  

! Indeed: 
!  All the paths have the same length. 
!  For the sake of simplicity, consider the path from 

the upper-left node to the lower-right node. 
!  The length of this path coincides with the diagonal 

of the square having side √2 (N-1), so it is 
 2(N-1). 
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WISE LAYOUT (4) 

! The layout is performed on the two sides of the 
silicon board, so it can be considered a 2-layer 
layout; one layer is composed of all diagonal 
wires running "north-east" (from lower-left to 
upper-right) -red lines- and the other layer is 
composed of "north-west” wires (from lower-
right to upper-left) -black lines.  
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WISE LAYOUT (5) 

! PROs: 
!  Good area : √2 (N-1) × √2 (N-1)= 2N2+o(N2)!
!  Constant wire length on each layer; this is not 

true in every layout: in the classical drawing of 
the butterfly network, for example, the straight-
edges on the last layer have unit length while the 
cross-edges on the same layer have linear length 
in the input size N; this is extremely bad, because 
synchronization of the information flow goes lost; 

!  The input and output nodes lie on the boundary of 
the layout, and this can be required by some 
applications. 
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WISE LAYOUT (6) 

! CONs: 
!  “slanted” lines, so that the area of the layout is 

measured by a rectangle whose sides are not 
parallel to coordinate axes but lie at 45°; if we 
follow the standard definition of layout area, it 
becomes 2(N-1) × 2(N-1)= 4N2+o(N2); indeed, the 
circumscribed square  with sides parallel to the 
coordinate axes has side equal to to the length of 
the path from the upper-left node to the lower-
right node, that is 2(N-1); 

!  … 
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WISE LAYOUT (7) 

! CONs (cnt.d): 
!  … it is a ‘cheating’ layout, indeed the “knock-

knees” are not avoided but arranged in the 
layout thanks to some devices that have no null 
area and so enlarge the layout area. 

!  The Wise layout “looks like” the usual 
representation. Nevertheless, in order to get 
the Wise layout from the usual representation, 
nodes must be permuted: 

37 

EVEN AND EVEN LAYOUT (1) 

! This layout has been presented by G.Even and 
S.Even [’00], and it is based on the notion of 
Layered Cross Product 

! Def. A layered graph of l+1 layers G=(V0, V1, …, 
Vl, E) consists of l+1 layers of nodes; Vi is the 
(non-empty) set of nodes in layer i; E is a set of 
directed edges: edge (u,v) connects two nodes of 
two adjacent layers, that is, if u lies on layer i 
then v lies on layer i+1. 
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EVEN AND EVEN LAYOUT (2) 

! Def. [Even & Litman ’92] The Layered Cross Product 
(LCP) of two layered graphs of l+1 layers each, G1=(V0

1, 
V1

1, …, Vl
1, E1) and G2=(V0

2, V1
2, …, Vl

2, E2), is a 
layered graph of l+1 layers, G=(V0, V1, …, Vl, E), where: 

!  For every i=0, …, l, Vi = Vi
1×Vi

2 (i.e. each layer is the 
cartesian product of the corresponding layers in G1 
and G2); 

!  There is an edge (u,v) in G connecting nodes (u1,u2) 
and (v1,v2) iff  (u1,v1) and  (u2,v2) are edges in G1 and 
G2, respectively. 
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EVEN AND EVEN LAYOUT (3) 

 Even and Litman proved that 
many well known topologies 
are the LCP of s imple 
structures (e.g. trees). 
 Namely , the but ter f ly 
network is the LCP of two 
binary trees, one of them is 
upward and the other one is 
downward. 

Exemples of LCP 
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EVEN AND EVEN LAYOUT (4) 

The Projection Methodology (PM): 
! Let G1 and G2 two layered graphs of l+1 layers 

each and let G denote their LCP. A layout of G 
is obtained with the PM as follows:  
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EVEN AND EVEN LAYOUT (5) 
The Projection Methodology (contd.): 

! Consider a cube and draw the graph G1 on the 
xy face so that  
!  (a) the y-coordinate of every node u e Vi

1 equals i  
!  (b) the x-coordinate of every node is an integer.  

! Similarly, draw the graph G2 on the yz face 
! … 
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EVEN AND EVEN LAYOUT (6) 
The Projection Methodology (cntd.): 

! … A three-dimensional drawing of the LCP G 
is constructed in the cube as follows:  
!  if u∈Vi

1 is drawn in coordinates (xu, i, 0) and v∈Vi
2 is 

drawn in coordinates (0, i, zv), then the coordinates of 
node (u,v)∈Vi are (xu, i, zv).  
In other words, the nodes of G are the intersections between 
the lines orthogonal to plane xy and passing through nodes of 
G1 and the lines orthogonal to plane yz  
and passing through nodes of G2. 

! A 2D drawing of G is obtained  
  by projecting the 3D drawing to  
  the xz plane.  

 

EVEN AND EVEN LAYOUT (7) 

Obs. It is possible to avoid to construct the 3D 
representation by immediately using the 
prolongations on plane xz of the projections of 
nodes in layer i of G1 on the x axis and of node in 
layer i of G2 on the z axis, i=0,…,l  
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EVEN AND EVEN LAYOUT (8) 

! The PM may produce layouts that do not satisfy the 
constraints required by the Thompson model. 
!  For example, the drawing above is a grid drawing but it 

is not an orthogonal drawing. 
! We now describe how rectilinear layouts of G can be 

obtained via the PM. First, we formalize necessary and 
sufficient conditions: 
!  for the edges of the xz projection of G to be along grid paths,  
!  for nodes to be mapped to different grid points, and  
!  for not using any grid edge more than once. 
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EVEN AND EVEN LAYOUT (9) 
 Four types of edges in the product graph G: 
1.  The product of two diagonal edges yields a diagonal 

edge; 
2.  The product of a vertical edge and a diagonal edge 

yields a vertical edge; 
3.  The product of a diagonal edge and a vertical edge 

yields a horizontal edge; 
4.  The product of two vertical edges 

 yelds a single grid point. 
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EVEN AND EVEN LAYOUT (10) 

!  In order to get a feasible layout through the PM, we 
have to impose that the product of either two diagonal 
edges or two vertical edges never occurs. 

 More precisely: 
!  1. The PM generates a layout of G in which the edges 

are grid lines if and only if the drawings of G1 and G2 
on the faces of the cube satisfy the following condition: 
For every edge e e E, exactly one of its factor is drawn 
diagonally.  

!  This claim avoids overlappings of nodes of the same 
layer, too.!
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EVEN AND EVEN LAYOUT (11) 

!  We need to impose that nodes in different layers do 
not overlap: 

!  2. The PM generates a layout of G in which at most 
one node is mapped to each grid point if and only if 
the sets{(xu, zv): u ∈  Vi

1  e v ∈ Vi
2} are disjoint, for 

each i=0, …, l.  
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EVEN AND EVEN LAYOUT (12) 
!  Consider now two diagonal edges (a,b) and (c,d) in 

G1; the coordinates of nodes a, b, c, d are: 
!  node a: (xa, i, 0);  
!  node b: (xb, i+1, 0);  
!  node c: (xc, j, 0);  
!  node d: (xd, j+1, 0). 

!  We say that these two edges are consistent if the 
open intervals  (xa, xb) and (xc, xd) are disjoint. 
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EVEN AND EVEN LAYOUT (13) 

! 3. The PM generates a layout of G in which no grid edge is 
used twice if and only if for every two inconsistent edges of 
one of the multiplicands the following condition holds:  
!  The two edges are not in the same layer of the multiplicand, and  
!  on the two layers in which they appear, there are no (straight) edges of the 

other multiplicand which are collinear.  

50 

 

Inconsistent edges on the same layer 

 

Inconsistent edges on different layers      

EVEN AND EVEN LAYOUT (14) 

!  In order to produce a feasible layout, we need to 
impose that all the three claims are satisfied. 

 
!  Let us consider the Claims one by one: 
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EVEN AND EVEN LAYOUT (15) 

!   1. The PM generates a layout of G in which the 
edges are grid lines if and only if the drawings of G1 
and G2 on the faces of the cube satisfy the following 
condition: For every edge e e E, exactly one of its 
factor is drawn diagonally. 

 
!  A solution is to double the number of edge levels so 

that edges in the drawing of G1 are diagonal in odd 
layers and straight in the even layers, while the 
edges in the drawing of G2 are straight in the odd 
layers and diagonal in the even layers. 
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EVEN AND EVEN LAYOUT (16) 

The doubling of the number of edge levels is achieved 
by stretching each edge of the two multiplicands to 
become a path of two edges. 

In this way we simulate the creations of edge bends. 
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EVEN AND EVEN LAYOUT (17) 

!  2. The PM generates a layout of G in which at most 
one node is mapped to each grid point if and only if 
the sets{(xu, zv): u ∈  Vi

1  e v ∈ Vi
2} are disjoint, for 

each i=0, …, l.  
 
!  A simple way to guarantee that this condition will 

hold is to make sure that no two nodes in the 
drawing of G1 (G2), except for the two end-points of 
the same straight edge, share the x-coordinate (z-
coordinate).  

!  This is always possible if we opportunely enlarge 
the drawings of the two factors. 
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EVEN AND EVEN LAYOUT (18) 

!  3. The PM generates a layout of G in which no grid 
edge is used twice if and only if for every two 
inconsistent edges of one of the multiplicands the 
following condition holds:  
!  The two edges are not in the same layer of the multiplicand, and  
!  on the two layers in which they appear, there are no (straight) edges 

of the other multiplicand which are collinear.  
 
! This condition is harder to enforce and is a severe 

limitation on this technique. For this reason, we limit 
to networks, each of which is the LCP of two trees.  
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EVEN AND EVEN LAYOUT (19) 
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EVEN AND EVEN LAYOUT (20) 

! The butterfly network is the LCP of two binary trees, one 
drawn upward and one drawn downward. (We dedicate a 
column to each vertex to prevent vertices of the layout 
from colliding.) 

! Proceed as follows:  
!  Draw one tree next to the xy plane and the other next to the yz 

plane  
!  Construct their LCP in 3D inside the cube, in such a way that 

the two trees are the projections of the resulting butterfly on 
the xy and yz planes  

!  The projection of this 3D figure on the floor is a planar layout of 
the butterfly  57 

 

EVEN AND EVEN LAYOUT (21) 

! This layout has the following properties: 
!  It’s symmetric; 
!  Its height is H=2(N-1); 
!  Its width is W=2(N-1); 
!  Its area is 4N2+o(N2); 
!  Input and output nodes are not on the boundary 

(negative property…)  
!  All the edges on the same layer has the same 

length. 
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COMPARING THE TWO TECHNIQUES 
! WISE - PROs: 

!  relatively small area 
!  It “looks like” a butterfly 
!  Input/output nodes on the boundary 

! WISE - CONs: 
!  knok-knees  
!  “slanted” grid 

! EVEN & EVEN - PROs: 
!  It eliminates all the flaws 

! EVEN & EVEN - CONs: 
!  Larger area 
!  input/output nodes inside the layout 59 

! With the aim of optimizing the layout area, other 
layout algorithms have been proposed: 
!  Dinitz [’98] proves that the area of the Even & 

Even layout can me decreased by means of some 
l o c a l a d j u s t m e n t s , s o t o a c h i e v e a r e a                
11/6 N2+o(N2) 

!  Later, Avior et al. [’98]  prove that any butterfly 
layout cannot have area smaller than N2 + o(N2) if 
“slanted” drawing is not allowed, and they provide 
an algorithm producing a layout of optimal area. 

OTHER RESULTS (1) 
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!  Finally, Dinitz et al. [’99] prove that, if a “slanted” 
drawing is allowed, area 1/2 N2+o(N2) is necessary 
and sufficient. 

 
! These works definitively close the optimal area 

layout problem of the Butterfly network. 
 

OTHER RESULTS (2) 
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OPTIMAL AREA LAYOUT OF THE 
BUTTERFLY NETWORK 

62 

! The two papers that provide an optimal area 
layout base their results on the following lemma: 

Lemma: For any non-negative integers j, k,       
0≤j≤j+k≤n, the subgraph of the n-dim. Butterfly 
induced by the nodes of levels j, j+1, …, j+k is the 
disjoint union of 2n-k copies of k-dimensional 
butterflies. 

! In particular,if j=0 and k=n-1: 

OPTIMAL AREA LAYOUT- IDEA (1) 
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! Hence, an (n-1)-dimensional Butterfly can be 
built as a pair of (n-2)-dim. Butterflies connected 
by one node layer and one edge layer. 

! If we cut out the input and output nodes from an 
n-dim. Butterfly, we get: 

OPTIMAL AREA LAYOUT- IDEA (2) 
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! Each one of 
these (n-2)-
dim. 
Butterflies can 
be, in turn, cut 
into many 
smaller 
butterflies: 

OPTIMAL AREA LAYOUT- IDEA (3) 
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! The previous layout can be better specified as 
follows: 

OPTIMAL AREA LAYOUT- IDEA (4) 
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!  Each rectangle contains a Butterfly that can be 
represented, either horizontally or vertically, layer by 
layer as follows: 

OPTIMAL AREA LAYOUT- IDEA (5) 

! Obs.: this layout is far from being optimal; 
nevertheless it allows to produce a final optimal 
layout. 
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!  It remains to connect the small rectangular 
butterflies:  

OPTIMAL AREA LAYOUT - IDEA (6) 
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! In the case of slanted layout, it can be bent along 
the line: 

OPTIMAL AREA LAYOUT - IDEA (7) 
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! It is possible to prove tight lower and upper bounds 
on the layout area for both the models (usual and 
slanted). 

! The interested students can look at: 
!  A. Avior, T.C., S. Even, A. Litman, A.L. Rosenberg: A Tight 

Layout of the Butterfly Network. Theory of Computing Systems 
31, 1998. 

!  Y. Dinitz, S. Even, M. Zapolotsky: A Compact Layout of the 
Butterfly. J. of Interconnection Networks 4, 2003. 

OPTIMAL AREA LAYOUT - IDEA (8) 
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LAYOUT OF THE  
HYPERCUBE NETWORK 71 

72 

THE HYPERCUBE (1) 

•  Widely used for parallel computation, thanks 
to its nice properties (high regularity, 
logarithmic diameter, good fault tolerance, 
…). 

•  Def. The n-dimensional Hypercube, Qn, has 
N=2n nodes and n2n edges. Each node is 
labeled with an n-bit binary string, and two 
nodes are linked with an edge iff their binary 
strings differ in precisely one bit. 

•  The edges of the hypercube can be naturally 
partitioned according to the dimensions that 
they traverse and Qn: Qn-1 ≡ Qn-1… 
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Qn can be built by joining with an edge nodes in two 
different copies of  Qn-1 if they have the same label. 
Obs.: These edges form a perfect matching. 

Q2 

00 01 

10 11 

000 

Q3 

001 

010 
011 

100 101 

110 111 

Q4 

0000 0001 

0010 
0011 

0100 0101 

0110 0111 

1000 1001 

1010 
1011 

1100 1101 

1110 
1111 

THE HYPERCUBE (2) 
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Property: Qn has diameter log N. 
Proof. Any two nodes  
u=u1u2…ulogN and v=v1v2…vlogN are connected by the 
path: 
u1u2…ulogN"v1u2…ulogN"v1v2…ulogN"…"v1v2…vlogN 
The claim trivially follows.     QED 

000 

Q3 

001 

010 
011 

100 101 

110 111 

THE HYPERCUBE (3) 
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Reminder: The bisection width of a network is the 
minimum number of edges one has to cut to disconnect 
the network into two equally sized subnetworks. 

Property. BW(Qn)=N/2. 

Q4 

0000 0001 

0010 
0011 

0100 0101 

0110 0111 

1000 1001 

1010 
1011 

1100 1101 

1110 
1111 

Proof. (idea) the red edges 
( = e d g e s i n  a  s i n g l e 
d i m e n s i o n ) d i v i d e t h e 
hypercube intwo two equally 
sized subnetworks; they are 
N/2 and it is not possible to 
cut a smaller number of edges 
to get the same result. 
 

THE HYPERCUBE (4) 
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Th. A lower bound on the layout area of a 
network is the square of its bisection width 
(proved for the layout of the complete graph). 

Cor. Each layout of Qn has area at least N2/4. 
 
In the following: layout with area 4/9N2+o(N2), 

that hence is almost optimal (far from the lower 
bound by a factor of 1.7) [Yeh, Varvarigos, Parhami, ‘99]. 

THE HYPERCUBE (5) 
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COLLINEAR LAYOUT (1) 

! Reminder: In a collinear layout all nodes are placed 
on the same line. Instead of computing its area, it 
is usual to count the number of necessary tracks. 

! We start with a 2-dim. Hypercube, and inductively 
move to hypercubes of higher dimensions: 
!  Q2: 

00 01 

10 11 

00 01 10 11 

2 tracks 
78 

COLLINEAR LAYOUT (2) 

! Assume that we have a collinear layout for Qn 
that requires f(n) tracks, where n is even: Qn+1 

2 tracks 

001 011 101 111 000 010 100 110 

2 tracks 1 track 

Tot. f(n+1)=2f(n)+1 track 
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COLLINEAR LAYOUT (3) 

! To obtain the collinear layout of Qn+2 we start 
with the layouts of four Qns: 

Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.

f(n+2)=4f(n)+2 
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COLLINEAR LAYOUT (4) 

! Th. The number of tracks required for the 
collinear layout of Qn is 2/3N (where N=2n is the 
number of nodes). 

!  Proof. We solve the following recurrence equation: 
!  f(n)=2f(n-1)+1 if n odd 
!  f(n)=4f(n-2)+2 if n even 
!  f(2)=2 
Even case: 
f(n)=4f(n-2)+2=42f(n-4)+4x2+2= 
=43f(n-6)+25+23+2=…= 
=…when n-2k=2 iff k=(n-2)/2…= 
 

4k f (n− 2k)+ 2 ⋅ 4i
i=0

k−1

∑ =

= 4
n−2
2 f (2)+ 2 4i

i=0

n−2
2
−1

∑ = 2 4i
i=0

n−2
2

∑ ≅ 2 ⋅ 4
n−2
2
+1

3
=
2
3
2n = 2

3
N
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COLLINEAR LAYOUT (5) 

(proof cnt.d)  
The odd case is analogous.     QED 
 
The area of this layout is (2/3N+n) x (nN). 
Th. Qn can be laid out in 4/9N2+o(N2) area. 
Proof idea. Let n=n1+n2. 
Let us use 2n1 copies of the collinear layout of Qn2, 
each placed along a row. 
We connect the 2n1 nodes that belong to the same 
column vertically according to the collinear layout of 
a Qn1. 

82 

COLLINEAR LAYOUT (6) 

(proof cntd.) 
Reminder: Qk needs of 
2/3nk tracks 
# of vertical tracks (rows) : 
2n1 copies x 2/32n2 tracks 

Additive height (nodes): 
2n1 copies x n2 

The width is computed 
analogously, switching the 
roles of n1 and n2. 

The claim follows choosing  
n1=�(n2)�n/2. 

Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower boundN2 4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B N 2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N 2 steps [20]. The proposed hypercube layout has max-
imum wire length N 3 o N , which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g.,N 214 16K), and has smaller
area by a factor of 2 25 o 1 at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2 1 horizontal tracks (or the first
2n1 1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36N
2 o N2 area, and

an enhanced-cube in 25
9 N

2 o N2 area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3N o N . To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N 2 additional links in a folded hyper-
cube, we need at most N 2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

7
6
N o N

7
6
N o N

49
36
N2 o N2

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N
2 o N2 .

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH log2 n log2 n [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH log2 n log2 n can be
laid out in

4N2

9 log2
2N

o
N2

log2N

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N n2n and its area is dominated by
its hypercube links, which requires 2n 2 9 o 2n area, an
N-node CCC can be laid out in

4N2

9 log2
2N

o
N2

log2N

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area.

In [16], layouts of area 2N2

log2
2N

o N2

log2N and 4N2

3 log2
2N

o N2

log2N
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3 o 1 , and smaller than that of the more recent
layouts given in [7] by a factor of 1 125 o 1 . The layout
area given in Theorem 2.3 is within a factor of 1  7 o 1
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.
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3D LAYOUT 
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! The diffusion of the 3D layout has increased in the 
last thirty years. 

! The topology is lain out on a series of slices. 
! Further optimization of the wire length and number 

of bends 
!   Less silicon used. 
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3D LAYOUT PROBLEM (1) 
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Def. A 3D layout of a topology G is a 1-1 function between 
G and the 3D grid such that: 
•  the nodes are mapped into grid points 

•  it is better if the nodes lie on the external slice in order to 
minimize: energy consuming, production of heat and 
difficulty of connection with other devices 

•  the wires are mapped on independent grid paths so that: 
•  these paths are edge-disjoint; 
•  there are no “knock-knees” 
•  these paths do not cross any mapping of a node that is not 
an extreme of the corresponding wire. 

Aim: minimizing the volume and keeping wires short. 

THE 3D LAYOUT PROBLEM (2) 
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The students interested in this topic can look at: 
-  L. Torok and I. Vrto. Layout Volumes of the 

Hypercube. Proc. Graph Drawing ’04. 
-  T.C. and A. Massini. Three Dimensional Layout of 

Hypercube Networks. Networks 47, 2006.  
-> possible lessons 

THE 3D LAYOUT PROBLEM (3) 
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