PACKET-ROUTING ON INTERCONNECTION
TOPOLOGIES (1)
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= Nevertheless, when the network is an
interconnection topology (and connects, for
example, processors), it is known and fixed in time.
Furthermore, efficiency is a primary issue.

= Solutions having stronger properties than the simple
shortest path algs are required.

PACKET-ROUTING ON INTERCONNECTION PACKET-ROUTING ON INTERCONNECTION
TOPOLOGIES (2) TOPOLOGIES (3)

Many different types of routing models.

Here, we will focus on the store-and-forward model = Global controller to precompute routing paths not
(also known as the model): allowed
=Each packet is maintained as an entity that is » Problem handled using only local control
passed from node to node as it moves through the . . .
network = A routing problem is called one-to-one if at most

one packet must be addressed to every node and

= A single packet can cross each edge during each each packet has a different destination.

step of the routing
= Depending on the algorithm, we may or may not * In contrast, one-to-many and many-to-one

allow packets to pile up in queues located at each

node. When queues are allowed: effort to keep

them short.



BUTTERFLY NETWORK (1) BUTTERFLY NETWORK (2)

Def. Let N=2" (hence n=log N); def. of n-dimensional butterfly (cntd)
the n-dimensional Butterfly is a
layered graph with:

N(n+1l) nodes (n+1 layers with 27
nodes each) and

- 2Nn edges.
Nodes:

nodes correspond to pairs (w, i),
where:

i is the layer of the node

- w is an n-bit binary number that
denotes the row of the node.

Edges:
Two nodes (w, i) e (w’,1’) are linked by
an edge iff i’=i+1] and either:
w=w’ (straight edge) or
w and w’ differ in precisely the i-
th bit (cross edge)

BUTTERFLY NETWORK (3) BUTTERFLY NETWORK (4) .

o Thg nodes~ of the. Butterfly are crossbar switches, i.e. The butterfly has
switches with two input and two output values and can
assume two states, cross and bar.

o Hence, the butterfly can be seen as a switching network
connecting 2N (IN=2") input units to 2N output units trough
a logN+1 layered network, having N nodes each.

a simple
recursive structure:
one n-dim. butterfly contains
two (n-1)-dim. butterflies as
subgraphs (just remove either
the layer 0 nodes or the layer n

o Input and output devices are usually processors and are nodes of the n-dim. butterfly to
often omitted in the graphical representations for the get two (n-I)-dimensional
sake of simplicity. . . butterflies).
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BUTTERFLY NETWORK (5) ROUTING ON THE BUTTERFLY (1)

Problem of routing /N packets from layer 0 to layer nin
an n-dimensional butterfly:

For each pair of rows w and w’, there
exists a unique path of length n
(known as greedy path) from (w;0) to
(W” ‘n);

this path passes through each layer
exactly once, using a cross-edge
from layer i to layer i+1 (i=0,...,n) iff
w and w’ differ in the i-th bit and
using a straight-edge otherwise.

= Each node (u,0) on layer 0 of the butterfly contains a
packet that is destined for node (77(u), n) on layer n,
where m:[1, N]=»[1,N] is a permutation.

=In the greedy routing algorithm, each packet is
constrained to follow its greedy path.

= When there is only one packet to route, the greedy
algorithm performs very well.

= Trouble can arise when many packets have to be
routed in parallel...

ROUTING ON THE BUTTERFLY (2) ROUTING ON THE BUTTERFLY (3)

*Many greedy paths might pass

through a single node or edge. - Assume for simplicity n odd (but

similar results hold when n is even),
and consider edge

=((00...0, (n-1)/2), (00...0,(n+1)/2))

= Node (00...0, (n-1)/2) is the root of a
complete binary tree extending to
the left having 2-D/2 leaves

= Since only one of these packets can
use the edge at a time, one of them
must be delayed before crossing the
edge.

= The butterfly is not able to route each -
permutation without delays, i.e. is a
blocking network

= The congestion problem arising in this * Analogously to the right

example is not overly serious. When N
is larger, however, the problem can be
much serious. In fact...




ROUTING ON THE BUTTERFLY (4)

= The permutation can be such that each greedy path
from a leaf of the left tree arrives to a leaf of the right
tree traversing e

= There are 2(-1/2=\|N/2 possible such paths, and thus
2(-1/2=\|N/2 packets must traverse e. So at least one
of them will be delayed byVN/2-1 steps.

= It takes at least n=log N steps to traverse the whole
networks and to route a packet to its destination.

=In this case, the greedy algorithm can take
VN/2+log N-1 steps to route a permutation.

= In general...

ROUTING ON THE BUTTERFLY (6)

= As this packet traverses layers 1, 2, ..., n, the total
delay encountered can be at most:

(n+1)/2 (n+1)/2

S(ni—1)= E(n “1)+ (n ~hs > Q7 -D+ (2"’—

i=1 i=1 i= (n+3)/2 i=1 i=(n+3)/2 i

<202 L0002y O(\[N) =1 = OGIN)

ROUTING ON THE BUTTERFLY ()

Th. Given any routing problem on an n-dimensional
butterfly for which at most one packet starts at each
layer 0 node and at most one packet is destined for
each layer n node, the greedy algorzthm will route all
the packets to their destinations in O( \/N) steps.

Proof. For simplicity, assume n odd (but the case n
even is similar)

= Let e be any edge in layer i, 0<i<n, and define n, to be
the number of greedy paths that traverse e

= n; <2"! (left tree) and, similarly, n,<27- (right tree)

= Any packet crossing e can only be delayed by the
other n;-1 packets that want to cross the edge.

ROUTING ON THE BUTTERFLY (1)

= Despite the fact that the greedy routing algorithm
performs poorly in the worst case, the greedy
algorithm is very useful in practice.

= For many useful classes of permutations, the greedy
algorithm runs in n steps, which is optimal and, for
most permutations, the greedy algorithm runs in n
+ o(n) steps.

= As a consequence, the greedy algorithm is widely
used in practice.
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BENES NETWORK (1) BENES NETWORK (2)

= The n-dimensional Bene§ network has 2Zn+] layers,

- . . . . each with 2" nodes.
= A possibility to avoid a routing with delays is
providing a ) = The first and last n+1 layers in the network form an n-
. ) dimensional Butterfly (the middle layer is shared).
» Bene$ network has this property
* Not surprisingly, the Benes§ network is very similar to

the Butterfly, in terms of both its computational power
and its network structure.

= [t consists of two back-to-back butterflies
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BENES NETWORK (3) BENES NETWORK (4)

= The reason for defining the Benes network is that it is an /3
excellent example of a rearrangeable network. '>g
» Def. A network with N inputs and N outputs is said to be =.->%g
rearrangeable if for any one-to-one mapping 7 of the * 13
inputs to the outputs (i.e. for any permutation), we can e
construct edge-disjoint paths in the network linking the >z
i-th input to the m7(i)-th output for I<i<N. \P
= In the case of the n-dimensional Benes network, we can <2

have two inputs for each layer 0 node and fwo outputs 18
for every layer 2n node, and still connect every >f1
permutation of inputs to outputs with edge-disjoint 12

paths.
= Hence, in this case, # of inputs=27*!
© ©



BENES NETWORE (5)

It seems extraordinary that we can find edge-disjoint
paths for any permutation. Nevertheless, the result is
true, and it is even fairly easy to prove, as we show in the

following:

Th. Given any one-to-one mapping 1 of 2°*! inputs to 27*!
outputs on an r-dimensional Bene§ network, there is a set
of edge-disjoint paths from the inputs to the outputs

connecting input i to output 11(i) for 1<i<27*!,

Proof. ...

BENES NETWORK (1)

PROOF OF THE REARRANSERBILITY OF THE BENES NETWORK (CNTD)

D/ \I D/

:

/N

NN NN

N
\§/, |
ANAAANANAANAN

BENES NETWORK (6)

PROOF OF THE REARRANGEABILITY OF THE BENES NETWORK (CNTD)

Proof. By induction on n.

= Basis: if n=1, the BeneS network consists of a single
node (i.e. a single 2x2 switch) and the result is
obvious.

= Induction: assume that the result is true for an (n-1)-
dimensional Benes network
= Key observation: the middle 2n-I layers of an n-

dimensional Bene§ network comprise two (n-I)-
dimensional BenesS networks



