
FIRST PART:
CABLE NETWORKS

1

THE ROUTING PROBLEM
I.E.
THE SHORTEST PATH PROBLEM AND

THE LEAST COST PATH PROBLEM

Prof. Tiziana Calamoneri
Network Algorithms

A.A. 2017/18

2

THE ROUTING PROBLEM(1)

Given a network:
¢ When packets are sent from a computer to another

one through the network, each computer has to route
data on a path passing through intermediate
computers.

¢ This is the very general routing problem.

3

THE ROUTING PROBLEM (2)

¢ Case 1. Not adaptive routing
A routing algorithm could try to send packets through
a network so that the length of the used path is
minimized. Such length can be measured in terms of
number of hops between pairs of computers.

¢ If the network is modeled as a graph (node = computer
and edge = link), the problem reduces to the shortest
path problem between two nodes.

4

THE ROUTING PROBLEM (3)

¢ Case 2. Adaptive Routing
It takes into account the traffic conditions: in order to
decide next step, the traffic is estimated, so the packet
is sent toward the zones of the network not affected by
traffic.

¢ If the network is modeled by an edge-weighted graph
(node=computer, edge=link, weight=dyna- mic value
proportional to the traffic on the connection), the
problem reduces to the (dynamic) least cost path
problem.

5

THE ROUTING PROBLEM (4)

6

cases 1 and 2. Adaptive and non adaptive routings (cntd)

¢ Non adaptive routing:
� Good results with consistent topology and traffic
� Poor performance if traffic volume or topologies

change over time
� Information about the entire network has to be

available
� Each packet is routed through an outgoing edge in a

fixed way
� Routing tables are used

THE ROUTING PROBLEM (5)

7

cases 1 and 2. Adaptive and non adaptive routings (cntd)

¢ Adaptive routing:
� Decisions are based on current network state
� Packets follow dynamically computed routes
� Routers are able to communicate
� Re-calculations quite often is necessary
� Each router creates its own routing table

THE ROUTING PROBLEM (6)

¢ Case 3. Routing with faults
When the network is modeled as a graph, the length
(edge-weight) of an edge represents the probability of
its failing (used, for instance, in networks of
thelephone lines, or broadcasting systems in computer
networks or in transportation routes). In all these
cases, one is looking for the route having the highest
probability for not failing.

More precisely…

8

THE ROUTING PROBLEM (7)
case 3. Routing with faults (cntd)

¢ Let p(e) be the probability that edge e does not fail.
Under the -not always realistic- assumption that
failings of edges occur independently of each other,
p(e1)�p(e2)�…�p(ek) gives the probability that the path
P=(e1,e2,…,ek) can be used without any faults.

¢ We want to maximize this probability over all possible
paths with starting point a and arrival point b…

9

THE ROUTING PROBLEM (8)
case 3. Routing with faults (cntd)

¢ Note. Since function log is monotonic increasing, the
maximum of the product p(e1)�p(e2)�…�p(ek) is reached
iff the logarithm of the product is maximum, i.e. iff:

log p(e1)+log p(e2)+…+ log p(ek) is maximum.
¢ log p(e) ≤ 0 for each e because p(e) ≤ 1.
¢ Define w(e)=-log p(e), then w(e)≥0 for all e; furthermore,

we have to find a path from a to b for which
w(e1)+w(e2)+…+w(ek) becomes minimum.

¢ Thus, our problem is reduced again to the
least cost path problem.

10

THE ROUTING PROBLEM (9)
Why does routing matter?
¢ End-to-end performance

� Quality of the path affects user performance
(propagation delay, throughput, packet loss)

¢ Use of network resources
� Balance of the traffic over the routers and the links
� Avoidance of congestion by directing traffic to lightly-

loaded links
¢ Transition

� The periodical changes of the routing tables reduce the
incidence of faults and increase load balancing

� Limiting packet loss and delay during changes
11

THE SHORTEST PATH PROBLEM
AND THE LEAST COST PATH
PROBLEM12

13

SHORTEST PATHS (1)
¢ Let G=(V,E) be a graph; let w(e) be the length of each

edge e.
¢ Many versions of the shortest path problem:

¢ All to all
¢ One to one
¢ One to all
¢ All to one

¢ Lengths can be:
¢ All equal (unit length)
¢ Non negative
¢ Possibly negative but without negative cycles
¢ Creating possible negative cycles 14

SHORTEST PATHS (2)
¢ Algorithm designed by Moore [‘59] for the one-to-all

shortest path problem and unit lenghts:
… Breadth First Search (BFS) …

¢ TH. G is connected iff at the end of the BFS starting from
node a, dist(a,b) < ∞ for each node b, where dist is the
distance in terms of number of edges.

¢ Note. This claim is false if G is a digraph (indeed the
notion of connected graph does not exist on digraphs:
strong and weak connection…)

LEAST COST PATHS (1)
Let G=(V,E) be a graph or a digraph and let w: EèIR be

an edge-weight function.
¢ (G,w) is called network.
¢ w(e) is called length (though including meanings such

as cost, capacity, weight, probability, …)
¢ For each path P=(e1, e2, …, ek) (if G is a digraph, P is a

dipath), the length of P is defined as
w(P)=w(e1)+w(e2)+ …+w(ek).

¢ Note. If w(e)=1 for each edge, the least cost path
problem reduces to the shortest path problem.

15

LEAST COST PATHS (2)
Given two nodes a and b, the distance d(a,b) is defined as

the minimum, over all the paths P connecting a and b,
of w(P).

Two problems arise:
¢ PR.1: b could be unreachable from a
¢ SOL.: define d(a,b)=∞ if b is unreachable from a

¢ PR.2: the minimum could not exist (cycles of negative
length)

¢ SOL.: only networks without cycles of negative length
are feasible

16

a b1 -3 1

1 1

LEAST COST PATHS (3)
Negative lengths may occur!
Example:
¢ A ship travels from port a to port b, where the route

(and possible intermediary ports) may be chosen freely.
¢ The length w(x,y) signifies the profit gained by going

from x to y.
¢ For some edges, the ship might have to travel empty so

that w(e) is negative for these edges: the profit is
actually a loss.

¢ Replacing w(e) by –w(e) for all e in this network, the
shortest path represents the route which yields the
largest possible profit.

17

LEAST COST PATHS (4)

¢ In general, when w represents a gain, it seems natural
to replace w(e) by –w(e) and look for least cost paths,
but this could introduce cycles of negative weigth.

¢ There exist good algorithms that find minimum weight
paths even when G contains cycles of negative weight.

18

LEAST COST PATHS (5)
OBSERVATIONS CONCERNING THE SOLUTION

In any solution:
¢ Cycles having negative length cannot exist (we avoided

them by hypthesis)
¢ Cycles having positive length cannot exist (by

contradiction: if one of them is in the solution, the new
solution without it has a lower cost)

¢ Cycles having null length do not exist without loss of
generality: if one of them is in the solution, the new
solution without it has the same cost and so is feasible,
too

¢ So: our solution does not contains any cycles and hence
it passes through at most n-1 edges. 19

LEAST COST PATHS (6)
OBSERVATIONS CONCERNING THE SOLUTION (CNT.D)

¢ In order to univocally determine a path from a to b it is
enough, for each node in such path, starting from b and
coming back, to store its predecessor on the path.

¢ To do it: for each node v in G define a pointer p(v),
initially equal to NULL; at the end, it points at the
predecessor of v on the path.

20

a
b

a
b

SOME CLASSICAL ALGORITHMS
(already studied!)21

BELLMAN-FORD ALGORITHM [‘58]
¢ G=(V,E) directed with edge-weights possibly negative
¢ It solves the problem of the shortest path from single

source, hence it outputs the distances from the (single)
source to each node

¢ It assumes that G does not contain any cycles of negative
length

¢ It is based on the principle of relaxation
¢ Time complexity: O(nm)

22

DIJKSTRA ALGORITHM [‘59]
¢ G=(V,E) directed with non negative edge-weights
¢ It solves the problem of the shortest path from single

source, hence it outputs the distances from the (single)
source to each node

¢ It is based on the principle of relaxation
¢ Time complexity: either O(n2) or O(m log n)
¢ The time complexity of the Dijkstra Algorithm is better

than the time complexity of the Bellman-Ford Algorithm,
but it is less versatile, as it requires non negative edge
weight edges.

23

FLOYD-WARSHALL ALGORITHM [‘62]
¢ G=(V,E) directed with edge-weights possibly negative
¢ It solves the problem of the all pairs shortest path, hence

it outputs a matrix with the distances from each node to
each other node

¢ Repeatedly applying the algs treated before, varying the
source over all nodes in V :
� Bellman-Ford: n O(nm)=O(n2m)
� Dijkstra: n O(n2) =O(n3) o n O(m log n)=O(mn log n)

¢ Time complexity: O(n3) and negative edge weights are
allowed

24

THE RELAXATION

¢ For each node v, let d(v) be a function representing
an estimate of the weight of the shortest path from s
to v.

¢ At the beginning d(v)=∞ for each v
¢ One relaxation step is performed as follows:

� Given an edge (u,v)
� If d(u)+w(u,v)<d(v)

d(v)=d(u)+w(u,w)
p(v)=u

¢Time complexity of one relaxation step: O(1)
25

BELLMAN-FORD ALGORITHM (1)
¢ Assume that G does not contain any cycles of

negative length
¢ For each v initialize d(v) and p(v)
¢ For i=1 to n-1 do

� For each (u,v) relax v w.r.t. (u,v)

¢Time Complexity: O(nm)

26

O(n)
n-1 times

| mO(1)

BELLMAN-FORD ALGORITHM (2)

27

0

∞

∞

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

∞

∞

∞

6

7
1
2

8
-3
-4

7

-2
5i=1

0

∞

∞

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

∞

∞

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

∞

8

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

1

2
3

4

5

6

7

8

9
10

x: order of the edges
: visited edges
: predecessor BELLMAN-FORD ALGORITHM (3)

28

i=2

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

6

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

2

7

4

8

6

7
1
2

8
-3
-4

7

-2
5

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

-

…

1

2
3

4

5

6

7

8

9
10

x: order of the edges
: visited edges
: predecessor

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

-

-

i=3

BELLMAN-FORD ALGORITHM (4)

29

0

2

7

4

2

6

7
1
2

8
-3
-4

7

-2
5

-

b

a

c

d e

(Let us consider predecessors in the
same direction than original edges)

Forwarding table of a:

b (a,d) as the shortest path is a-d-c-b
c (a,d) as the shortest path is a-d-c
d (a,d)
e (a,d) as the shortest path is a-d-c-b-e

BELLMAN-FORD ALGORITHM (5)

30

Bellman-Ford Algorithm is used for Distance Vector
routing, an iterative, asynchronous and distributed
protocol.

� c(x,v)=cost for (directed) link from x to v
� Dx(y)=estimate of least cost from x to y; x mantains

distance vector Dx=[Dx(y) for each y neighbor of x]; for
each neighbor y, x mantains also Dy

� Each node x periodically sends Dx to its neighbors
� Neighbors update their own distance vector:

Dx(y)=min{c(x,v)+Dv(y)}
� x notifies neighbors when its distance vector changes
� Over the time, Dx converges

¢ An exemple: Routing Information Protocol (RIP)

31

DIJKSTRA ALGORITHM (1)
¢ G=(V,E) directed with non negative edge-weights
¢ It partitions the nodes of G: nodes whose shortest

path from s has already been found (S) and all the
other nodes (V-S)

¢ Greedy algorithm

¢ At each step, let u be the node in V-S with minimum
value of d; add u to S and relax all the edges
outcoming from u

¢ Keep V-S in a priority queue (e.g. min heap) 32

DIJKSTRA ALGORITHM (2)
¢ For each v initialize d(v) and p(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

outcoming from u
relax v w.r.t. (u,v)
Update Q

The time
complexity
depends on the
data structure
used to implement
Q:

Queue: O(n2)
Heap: O(m log n)
Fibonacci Heap:

O(m+n log n)

33

DIJKSTRA ALGORITHM (3)
¢ For each v initialize d(v) and p(v)
¢ S=empty set
¢ Q=V
¢ While Q is not empty

• u=ExtractMin(Q)
• S=S U {u}
• For each edge (u,v)

outcoming from u
relax v w.r.t. (u,v)
Update Q

Using heap:
O(n)
O(1)
O(n)
n times

| O(log n)
|O(1)

| O(deg u) times
| | O(1)
| |O(log n)

tot.
O(n log n+ m log n)=
O(m log n)

34

DIJKSTRA ALGORITHM (4)

0

∞

∞

∞

∞

6

7
1
2

8
8
1

7

2
5

0

6

7

∞

∞

6

7
1
2

8
8
1

7

2
9

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

5

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

: visited edges
: predecessor
: nodes in S
: nodes in V-S

35

DIJKSTRA ALGORITHM (5)

(Let us consider drawings of predecessors in the
same direction than original edges)

Forwarding table of a:

b (a,b)
c (a,b) as the shortest path is a-b-e-c
d (a,d)
e (a,b) as the shortest path is a-b-e

0

6

7

1

7

6

7
1
2

8
8
1

7

2
9

4

a

e

cb

d

DIJKSTRA ALGORITHM (6)
Dijkstra Algorithm is used for dynamic routing
protocols.
¢ Each router:

� Keeps trace of its incident links
¢ Whether the link is up or down
¢ The cost on the link (varying in time)

� Broadcasts the link state (flooding)
¢ So, every router has a complete view of the graph

� Runs Dijkstra Algorithm
¢ To compute the shortest paths…
¢ …and construct the forwarding table

¢ An exemple: Open Shortest Path First (OSPF) used
in the networks with Internet Protocol (IP)

36

37

FLOYD-WARSHALL ALGORITHM (1)
Sometimes, it is not enough to calculate the distances
w.r.t. a certain node s: we need to know the distances
between all pairs of nodes.
¢ G=(V,E) directed with any edge-weight.
¢ Algorithm for the all-to-all shortest path problem
¢ Trick 1: all edges are in; the non-existing ones have

w=∞
¢ Trick 2: in order to go from i to j you can either go

directly or passing through a third node k
¢ dynamic programming

38

FLOYD-WARSHALL ALGORITHM (2)
Algorithm:
¢ For each node i, initialize dist(i,i)=0
¢ For each edge (i,j) initialize dist(i,j)=w(i,j)
¢ For each node k

¢ For each node i
¢ For each node j

dist(i,j)=min{dist(i,j), dist(i,k)+dist(k,j)}

¢ Time Complexity O(n3)

O(n)
O(n2)
n times
|n times
|| n times
||| O(1)

39

ANOTHER APPLICATION (1)
Difference Constraints:
¢ Let be given some tasks with precedence constraints

and running lengths, and an unlimited (or limited by
n=number of tasks) number of processors:
¢ Each task i has:

• Starting time si
• Time to complete bi>0
• Constraint sj+bj≤si if task i can be started

after that task j has been completed
¢ First task can start at time 0
¢ When can we finish last task? 40

ANOTHER APPLICATION (2)
This is the Shortest Path Problem on directed acyclic

graphs:
¢ Define a graph having a node for each task
¢ Insert a dummy node v0 (that models time 0)
¢ Insert an arc (v0,i) for each task node i and let 0 be its

weight
¢ For each precedence constraint sj+bj≤si insert an arc (j,i)

with weight bj
¢ Optimal Solution: start each task i at time equal to the

length Li of the longest path from v0 to i. All the tasks are
surely completed within time

maxi (Li+bi)

41

ANOTHER APPLICATION (3)
To transform to the shortest path problem, multiply

all lengths and times by -1:

b1=2
b2=3
b3=1
b4=2
s3+b3≤s2

s3+b3≤s1

v0

1

3

2
4

1

1

3 1
2

4

PACKET-ROUTING ALGORITHMS ON
INTERCONNECTION TOPOLOGIES

42

PACKET-ROUTING ON INTERCONNECTION
TOPOLGIES (1)
¢ Up to now, in the routing problem we have

considered the network as a graph unknown to
the nodes and variable in time (faults, varying
traffic, etc.)

¢ Nevertheless, when the network is an
interconnection topology (and connects, for
example, processors), it is known and fixed in
time. Furthermore, efficiency is a primary issue.

¢ Solutions having stronger properties than the
simple shortest path algs are required.

43

Many different types of routing models.
¢ Here, we will focus on the store-and-forward model

(also known as the packet-switching model):
� Each packet is maintained as an entity that is

passed from node to node as it moves through
the network

� A single packet can cross each edge during each
step of the routing

� Depending on the algorithm, we may or may not
allow packets to pile up in queues located at each
node. When queues are allowed: effort to keep
them short. 44

PACKET-ROUTING ON INTERCONNECTION
TOPOLGIES (2)

¢ Global controller to precompute routing paths not
allowed

¢ Problem handled using only local control
¢ A routing problem is called one-to-one if at most

one packet must be addressed to every node and
each packet has a different destination.

¢ In contrast, one-to-many and many-to-one

45

PACKET-ROUTING ON INTERCONNECTION
TOPOLGIES (3)

46

BUTTERFLY NETWORK (1)
Def. Let N=2n (hence n=log N); the n-

dimensional Butterfly is a layered
graph with:
• N(n+1) nodes (n+1 layers with 2n

nodes each) and
• 2Nn edges.

Nodes:
nodes correspond to pairs (w, i),
where:
• i is the layer of the node
• w is an n-bit binary number that

denotes the row of the node.
…

47

BUTTERFLY NETWORK (2)
def. of n-dimensional butterfly (cntd)

…
Edges:

Two nodes (w, i) e (w’, i’) are linked by
an edge iff i’=i+1 and either:

¢w=w’ (straight edge) or
¢w and w’ differ in precisely the i-

th bit (cross edge)

48

BUTTERFLY NETWORK (3)
¢ The nodes of the Butterfly are crossbar switches, i.e.

switches with two input and two output values and can
assume two states, cross and bar.

¢ Hence, the butterfly can be seen as a switching network
connecting 2N (N=2n) input units to 2N output units
trough a logN+1 layered network, having N nodes each.

¢ Input and output devices are usually processors and are
often omitted in the graphical representations for the
sake of simplicity.

49

BUTTERFLY NETWORK (4)

¢ The butterfly has a simple
recursive structure:
one n-dim. butterfly contains
two (n-1)-dim. butterflies as
subgraphs (just remove either
the layer 0 nodes or the layer
n nodes of the n-dim. butterfly
to get two (n-1)-dimensional
butterflies).

50

BUTTERFLY NETWORK (5)

For each pair of rows w and w’, there
exists a unique path of length n
(known as greedy path) from (w,0) to
(w’, n);
this path passes through each layer
exactly once, using a cross-edge from
layer i to layer i+1 (i=0,…,n) iff w and
w’ differ in the i-th bit and using a
straight-edge otherwise.

000

001

010

011

100

101

110

111

w

w’

ROUTING ON THE BUTTERFLY (1)
Problem of routing N packets from layer 0 to layer

n in an n-dimensional butterfly:
¢ Each node (u,0) on layer 0 of the butterfly

contains a packet that is destined for node
(π(u), n) on layer n, where π:[1, N]è[1,N] is a
permutation.

¢ In the greedy routing algorithm, each packet is
constrained to follow its greedy path.

¢ When there is only one packet to route, the
greedy algorithm performs very well.

¢ Trouble can arise when many packets have to be
routed in parallel… 51

ROUTING ON THE BUTTERFLY (2)

52

¢ Many greedy paths might pass through
a single node or edge.

¢ Since only one of these packets can use
the edge at a time, one of them must be
delayed before crossing the edge.

¢ The butterfly is not able to route each
permutation without delays, i.e. is a
blocking network

¢ The congestion problem arising in this
example is not overly serious. When N
is larger, however, the problem can be
much serious. In fact…

ROUTING ON THE BUTTERFLY (3)

53

¢ Assume for simplicity N odd (but
similar results hold when N is even),
and consider the edge
e=((00…0, (n-1)/2), (00…0,(n+1)/2))

¢ The node (00…0, (n-1)/2) is the root
of a complete binary tree extending
to the left having 2(n-1)/2 leaves

¢ Analogously to the right
¢ …

ROUTING ON THE BUTTERFLY (4)

54

¢ …
¢ The permutation can be such that each greedy path

from a leaf of the left tree arrives to a leaf of the right
tree traversing e

¢ There are 2(n-1)/2=√N/2 possible such paths, and thus 2(n-

1)/2=√N/2 packets must traverse e. So at least one of
them will be delayed by√N/2-1 steps.

¢ It takes at least n=log N steps to traverse the whole
networks and to route a packet to its destination.

¢ In this case, the greedy algorithm can take
√N/2+log N-1 steps to route a permutation.

¢ In general…

ROUTING ON THE BUTTERFLY (5)

55

Th. Given any routing problem on an n-dimensional
butterfly for which at most one packet starts at each
layer 0 node and at most one packet is destined for
each layer n node, the greedy algorithm will route all
the packets to their destinations in O(√N) steps.

Proof. For simplicity, assume n odd (but the case n
even is similar)

¢ Let e be any edge in layer i, 0<i≤n, and define ni to
be the number of greedy paths that traverse e

¢ ni ≤2i-1 (left tree) and, similarly, ni≤2n-i (right tree)
¢ Any packet crossing e can only be delayed by the

other ni-1 packets that want to cross the edge.
¢ …

ROUTING ON THE BUTTERFLY (6)

56

¢ …
¢ As this packet traverses layers 1, 2, …, n, the total

delay encountered can be at most:

€

(ni −1)
i=1

n

∑ = (ni −1)
i=1

(n+1)/ 2

∑ + (ni −1)
i=(n+3)/ 2

n

∑ ≤ (2i−1 −1) + (2n− i −1)
i=(n+3)/ 2

n

∑
i=1

(n+1)/ 2

∑ ≤

€

≤ 2(n+1)/ 2 + 2(n−1)/ 2 − n =O(N) − n =O(N) n

=(n+1)/2+1
= (2 j −1)

j=0

(n+1)/2−1

∑ = (2 j −1)
j=0

(n−3)/2

∑

recalling
that

2 j = 2k+1 −1
j=0

k

∑

ROUTING ON THE BUTTERFLY (7)

57

¢ Despite the fact that the greedy routing algorithm
performs poorly in the worst case, the greedy
algorithm is very useful in practice.

¢ For many useful classes of permutations, the greedy
algorithm runs in n steps, which is optimal and, for
most permutations, the greedy algorithm runs in
n + o(n) steps.

¢ As a consequence, the greedy algorithm is widely
used in practice.

BENEŠ NETWORK (1)
¢ A possibility to avoid a routing with delays is

providing a non blocking topology.
¢ Beneš network has this property
¢ It consists of two back-to-back butterflies

58

BENEŠ NETWORK (2)
¢ The n-dimensional Beneš network has 2n+1 layers,

each with 2n nodes.
¢ The first and last n+1 layers in the network form an

n-dimensional Butterfly (the middle layer is shared).
¢ Not surprisingly, the Beneš network is very similar to

the Butterfly, in terms of both its computational
power and its network structure.

59

BENEŠ NETWORK (3)
¢ The reason for defining the Beneš network is that it is

an excellent example of a rearrangeable network.
¢ Def. A network with N inputs and N outputs is said to

be rearrangeable if for any one-to-one mapping π of
the inputs to the outputs (i.e. for any permutation), we
can construct edge-disjoint paths in the network
linking the i-th input to the π(i)-th output for 1≤i≤N.

¢ In the case of the n-dimensional Beneš network, we
can have two inputs for each layer 0 node and two
outputs for every layer 2n node, and still connect every
permutation of inputs to outputs with edge-disjoint
paths.

¢ Hence, in this case, # of inputs=2n+1
60

BENEŠ NETWORK (4)

61

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

BENEŠ NETWORK (5)
It seems extraordinary that we can find edge-disjoint

paths for any permutation. Nevertheless, the result is
true, and it is even fairly easy to prove, as we show in
the following:

Th. Given any one-to-one mapping π of 2n+1 inputs to 2n+1

outputs on an r-dimensional Beneš network, there is a
set of edge-disjoint paths from the inputs to the outputs
connecting input i to output π(i) for 1≤i≤2n+1.

Proof. By induction on n.
¢ Basis: if n=1, the Beneš network consists of a single

node (i.e. a single 2x2 switch) and the result is obvious.
¢ Induction: assume that the result is true for an (n-1)-

dimensional Beneš network
¢ …

62

BENEŠ NETWORK (6)

¢ Key observation: the middle 2n-1 layers of an n-
dimensional Beneš network comprise two (n-1)-
dimensional Beneš networks

63

Proof of the rearangeability of the Beneš network (cntd)

BENEŠ NETWORK (7)

¢ Hence, for each path, it will be sufficient to
decide whether it is to be routed through the
upper sub-Beneš network or through the lower
sub-Beneš network.

64

Proof of the rearangeability of the Beneš network (cntd)

BENEŠ NETWORK (8)

¢ The only constraints we have to consider to decide
whether paths use the upper or lower subnetworks are
that paths from inputs 2i-1 and 2i must use different
subnetworks for 1 ≤ i ≤ 2n, and that paths to outputs 2i-1
and 2i must use different subnetworks.

¢ …easy…

65

Proof of the rearangeability of the Beneš network (cntd)

BENEŠ NETWORK (9)

66

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

Proof of the rearangeability of the Beneš network (cntd)

BENEŠ NETWORK (10)

67

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
9
8
12
15
13
7
5
4
10
1
2
16
7
11
14

And so on…

Proof of the rearangeability of the Beneš network (cntd)

BENEŠ NETWORK (11)

68

Summary of the steps:
¢ We start by routing the first path through the upper

sub-network.
¢ We next satisfy the constraint generated at the output

by routing the corresponding path through the lower
sub-network.

¢ We keep on going back and forth through the network,
satisfying constraints at the inputs by routing through
the upper sub-network and satisfying constraints at
the outputs by routing through the lower sub-network.

¢ …

Proof of the rearangeability of the Beneš network (cnt.d)

BENEŠ NETWORK (12)

69

¢ …
¢ Eventually, we will close the loop by routing a path

through the lower sub-network (in response to an
output constraint) that shares an input switch with
the first path that was routed.

¢ If any additional paths needs to be routed, we con-
tinue as before, starting over again with an arbitrary
unrouted path.

¢ In this way, all paths can be assigned to the upper or
lower sub-networks without conflict.

Proof of the rearangeability of the Beneš network (cntd)

BENEŠ NETWORK (13)

70

¢ This algorithm is called looping algorithm.
¢ It is easy to see that all paths can be assigned to the

upper or lower sub-networks without conflict:
¢ By construction, if we start going to the upper sub-

network, we will arrive to the corresponding output in
the upper sub-network and we will leave it to the lower
sub-network, and so on.

¢ For parity reason, when a loop is close, we will
correctly arrive from the right sub-network.

¢ The remainder of the path routing and switch setting
is handled by induction in the sub-networks. n

Proof of the rearangeability of the Beneš network (cntd)

¢ In the case that each layer 0 node of the n-dimensional
Beneš network has just one input and each layer 2n
node has just one output, then the paths from the
inputs to the outputs can be constructed so as to be
node-disjoint (instead of only edge-disjoint):

¢ …

71

BENEŠ NETWORK (14)
¢ Th. Given any one-to-one mapping of π of 2n inputs to

2n outputs in an n-dim. Beneš network, there is a set of
node-disjoint paths from the inputs to the outputs
connecting input i to output π(i) for 1≤i≤2n.

¢ Proof. Identical to the previous one, but the paths
needing to use different Beneš networks are now i and
i+2n-1, 1≤i≤2n-1 (and not 2i-1 and 2i). n

72

BENEŠ NETWORK (15)

2n-1

¢ Exemple: n=2, hence 2n-1=2

73

BENEŠ NETWORK (16)

1
2
3
4

1

2

3

4

¢ The only drawback to these theorems is that we
do not know how to set the switches on-line. In
other words, each switch needs to be told what to
do by a global control that has knowledge of the
permutation being routed.

¢ There exist numerous methods for overcoming
this difficulty (not studied here).

74

BENEŠ NETWORK (17)

