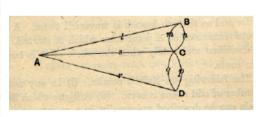
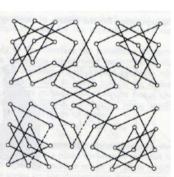
NETWORK ALGORITHMS WELCOME!!


A.A. 2018/19

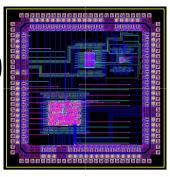
THE STARTING POINT (1)

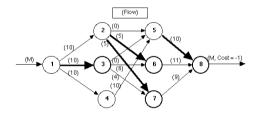
- It is usual to position the birthdate of the modern graph theory in 1736, when Euler formulated his Königsberg bridge problem.
- Euler solved this problem proving, in a constructive fashion, a characterization of Eulerian graphs. This is considered the first graph algorithm solving a "real life" problem.

THE STARTING POINT (2)


Since then, graph algorithms have been used to solve many problems in several applicative fields:

- games and puzzles:
- topology:




THE STARTING POINT (3)

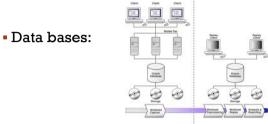
Specifically, in computer science:

• Electronic engineering:

• Operative research:

THE STARTING POINT (5)

• Networks:


This course will be focused on:

- Cable networks
- Wireless networks
 - oFixed
 - oMobile

THE STARTING POINT (4)

• Artificial intelligence:

Communication:

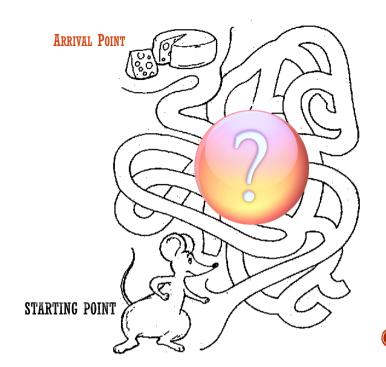
THE STARTING POINT (6)

- All over the world, courses of Network Algorithms are thought.
- Almost all of them have a theoretical approach:

(in the last years)

- Princeton Univ. (Robert Tarjan) http://www.cs.princeton.edu/courses/archive/spr11/cos423/
- Stanford Univ. (Balaji Prabhakar) http://web.stanford.edu/class/ee384m/
- Cornell Univ. (David Easley & Eva Tardos) https://courses.cit.cornell.edu/cs2850_2016fa/
- Universiteit Utrecht (Hans Bodlaender) http://www.cs.uu.nl/docs/vakken/na/
- Tel Aviv Univ.(Noga Alon & Amos Fiat) http://taualgorithms.wikidot.com/course-schedule
- Uni Freiburg (Fabian Kuhn)
 http://ac.informatik.uni-freiburg.de/teaching/ss_16/network-algorithms.php

.



THE ARRIVAL POINT

- Aim:

to convince you that graph algorithms are not old-fashioned, though dated; instead, they are useful instruments to solve important and living problems.

- We will see a number of advanced techniques for efficient algorithm design, often at the hand of problems from networks and graphs. In many network applications, graphs are used as a model. In other applications, the graph model may be less obvious, but appears to be very useful.
- We will study how network problems are transformed exploiting a graph model; moreover, we will look into algorithmic problems and their solutions on networks and graphs.

WHICH ROUTE? (1)

Several topics will be dealt with, all in the same way:

- Definition of the network problem
- Model as (classical) graph problem
- Known solutions for the graph problem
- Other possible approaches based on the properties of the considered networks

Some classical topics

Some research topics (suitable for theses and new results)

WHICH ROUTE? (2)

- The first topics will be more classical, and they will exploit some things you studied in the past, in order to start in an "easy" way; then the topics will become less and less standard...
- Why (my) research topics? three reasons:
 - Passion for these topics
 - International context
 - Chance to approach research topics in the algorithm field and produce new and interesting results (e.g. during your master thesis period...)

WHICH ROUTE? (3)

Topics surely dealt with in this course:

- Cable networks:
 - The routing problem

i.e

The minimum cost path problem

o The interconnection topology layout problem

i.e.

The orthogonal grid drawing

o The problem of minimizing boolean circuits

i.e.

The minimum set cover problem

o The problem of infecting a network with a worm

i.e

The minimum vertex cover problem

WHICH ROUTE? (4)

Topics surely dealt with in this course (2):

- Wireless ad hoc networks:
 - The frequency assignment problem

A vertex coloring problem

o The minimum energy broadcast problem

The minimum spanning tree problem

o The data mule scheduling problem

i.e.

The travelling salesman problem

13

WHICH ROUTE? (5)

Topics surely dealt with in this course (3):

- Sensor networks:
 - The centralized deployment problem

The minimum cost perfect matching problem on bipartite graphs

The self-deployment problem

 i.e.

 The Voronoi diagram construction problem

o Monitoring by UAVs

i.e.

The multiple TSP with constraints (more or less)

WHICH ROUTE? (6)

Books:

- Many topics deal with recent research, so: few books and many papers
- In the web page of the course:

list of papers I have used.

Attending lessons is particularly important!
 Even because...

EXAM PROCEDURE

- Only oral exam
- One (short!) lessons will be held by each student.
- This has a twofold aim: from the one hand it gets close students to research; from the other hand it is a good exercise to learn to extract the main ideas from a paper.
- This lesson will exonerate students by a part of the oral exam and are compulsory (mod the # of attendees).

17

AT THE END OF THIS COURSE...

I would be happy to have your comments, especially about possible improvements.

Namely:

- What to deep in,
- What to skip,
- What to add,
- Any other suggestion...

RELATION WITH OTHER COURSES

 No previous exams are required to attend this course, nevertheless A DEEP FAMILIARITY WITH ALGORITHMS AND DATA STRUCTURES IS NECESSARY.

