

Improved approximation algorithms for minimum AND-circuits problem via k-Set Cover

NETWORK ALGORITHMS PRESENTATION BY MATTEO PRATA - 13/11/2018

Introduction to the problem

"Improved approximation algorithms" for minimum AND-circuits problem via k-set cover" By Hiroki Morizumi (2010)

- Approximation algorithms: **Cover-** μ and **Greedy-** μ
- Minimum AND-circuit, a circuit minimization problem
- Reduction to k-Set Cover

• Approximation ratio of at most 1.199 (outperforms 1.278 by J. Arpe and B. Manthey)

Preliminaries 1/2

variables of a subset of X

 $M = x_{i_1} \wedge \cdot$

• We denote by $\binom{M}{2}$ the set $\{S \subseteq X \mid |S| = 2 \land S \subseteq M\}$

Given a set of monomials $\mathcal{M} = \{M_1, \dots, M_k\}$ the *multiplicity* of a set $S \subseteq X$ is the number of occurrences of S as a sub-monomial of a monomial i.e.

 $\operatorname{mult}_{\mathcal{M}}(S) = |\{M \in \mathcal{M} \mid S \subseteq M\}|$

• The *maximum multiplicity* of a set of monomials is defined by

 $\operatorname{mult}(\mathcal{M}) = \max_{|S| \ge 2} \operatorname{mult}_{\mathcal{M}}(S)$

A Boolean monomial over a set of boolean variables $X = \{x_1, \ldots, x_n\}$ is an AND-product of

$$\dots \wedge x_{i_d} = \{x_{i_1}, \dots, x_{i_d}\}$$

Preliminaries 2/2

- 2 and arbitrary out-degree

$$\mathcal{M} = \{M_1 : (a \land b \land d), M_2 : (a \land c \land d)\}$$

An AND-circuit is a DAG that consists of input nodes and other nodes called AND-gates

Every input node can have in-degree 0 and arbitrary out-degree. Every AND-gate has in-degree

• A circuit C computes a set of monomials \mathcal{M} if all monomials in \mathcal{M} are properly evaluated in C

Minimum AND-Circuit

Given a set of monomials $\mathcal{M} = \{M_1, \dots, M_k\}$ over a set of Boolean input variables $X = \{x_1, \dots, x_n\}$ we aim to find a circuit of minimum size which computes \mathcal{M}

$$\mathcal{M} = \{M_1 : (a \land b)\}$$

 $b \wedge d$, $M_2 : (a \wedge c \wedge d)$

Algorithm Cover-µ

Algorithm $COVER_{\mu}$ for Min-3-AC with maximum multiplicity μ .

- 1: Input $\mathcal{M} = \{M_1, \dots, M_k\}.$
- 2: Compute the μ -Set Cover instance $\mathcal{S}(\mathcal{M})$.
- 3: Compute a set cover for $\mathcal{S}(\mathcal{M})$.
- 4: Output the circuit corresponding to the set cover.

How the reduction to µ-Set Cover works:

- The universal set U is \mathcal{M}
- For each pair S in $\bigcup_{M \in \mathcal{M}} {M \choose 2}$ add the set $\{M \in \mathcal{M} \mid S \in {M \choose 2}\}$ to a collection C
- Since the multiplicity is at most μ , (U, C) is a μ -Set Cover instance

w.l.o.g. monomials have degree 3

Algorithm Cover-µ

 $\mathcal{M} = \{M_1 : (a \land b \land d), M_2 : (b \land d \land e), M_3 : (b \land c \land d), M_4 : (a \land d \land e)\}$

 $U = \mathcal{M}$

 $\binom{M_1}{2} = \{(a,b), (b,d), (a,d)\}$ $\binom{M_2}{2} = \{(b,d), (d,e), (b,e)\}$ $\binom{M_3}{2} = \{(b,c), (c,d), (b,d)\}$ $\binom{M_4}{2} = \{(a,d), (d,e), (a,e)\}$

 $(d, e) : \{M_2, M_4\}, (b, e) : \{M_2\}, (b, c) : \{M_3\}, (c, d) : \{M_3\}, (a, e) : \{M_4\}\}$

Approximation

- Let k be the number of gates on the second layer of the optimal circuit
- Let ℓ be the number of gates on the **first** layer of the optimal circuit

Lemma 3.1. For $\mu \geq 3$, COVER_{μ} outputs a circuit for \mathcal{M} of size at most $k + (H_{\mu} - \frac{1}{2})\ell$, where $H_{\mu} = \sum_{i=1}^{\mu} \frac{1}{i}$.

$$\rho_{\text{COVER}\mu} \leq \frac{k + (H_{\mu} - \frac{1}{2})\ell}{k + \ell}, \text{ increasing in } \ell.$$

Theorem 3.2. The Min-3-AC problem restricted to instances of maximum multiplicity three and four is approximable with a factor of 1.125 and 45/38 < 1.185, respectively.

cond layer of the optimal circuit to the optimal circuit

Algorithm Greedy-µ

Approximation

Lemma 3.3. For $\mu \geq 2$, GREEDY_{μ} outputs a circuit for \mathcal{M} of size at most $max\{\frac{\mu+2}{\mu+1}, \rho_{\mu}\}k + \rho_{\mu}\ell.$ $\frac{\mu + 2}{\mu + 1}k_1 + \rho_\mu(k_2 + \ell)$

$$\rho_{\text{GREEDY}_{\mu}} \leq \frac{\max\{\frac{\mu+2}{\mu+1}, \rho_{\mu}\}k + \rho_{\mu}\ell}{k+\ell}$$

 $\frac{231e^2}{193e^2}$ -

$$\rho_{\text{GREEDY}} \leq \frac{(1+e^{-2})k+2\ell}{k+\ell}, \quad \text{increasing in } \ell.$$

$$\ell(k) \le \max\left\{\frac{\mu+2}{\mu+1}, \rho_{\mu}\right\}k + \rho_{\mu}\ell(k)$$

$$\rho_{\text{GREEDY}_4} \leq \frac{\frac{6}{5}k + \frac{45}{38}\ell}{k + \ell}, \quad \text{decreasing in } \ell.$$

Theorem 3.4. The Min-3-AC problem is approximable with a factor of

$$\frac{-225}{-190} < 1.199.$$

Conclusion

maximum multiplicity	2	3	4	5	• • •	unbounded
Arpe and Manthey [1]	P	1.25	$1.2\overline{6}$	$1.2\overline{7}$		1.278
Our results	-	1.125	1.185	1.198		1.199

References

H. Morizumi, "Improved approximation algorithms for minimum AND-circuits problem via k-set cover, Information Processing Letters", Information Processing Letters, 111(5), pp. 218-221, 2011.

J. Arpe and B. Manthey, "Approximability of minimum AND-circuits", Algorithmica 53(3), pp. 337–357, 2009.

Table 1: Approximation ratios for Min-3-AC

