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INTRODUCTION

“Improved approximation algorithms  
for minimum AND-circuits problem via k-set cover”

Introduction to the problem

By Hiroki Morizumi (2010)

Minimum AND-circuit, a circuit minimization problem!  

Approximation algorithms: Cover-µ and Greedy-µ!  

Approximation ratio of at most 1.199 (outperforms 1.278 by J. Arpe and B. Manthey)!  

Reduction to k-Set Cover!  
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PRELIMINARIES

Preliminaries 1/2

We denote by       the set !  again. The degree of M is |M |. We denote by
°
M

2

¢
the set {S ⊆ X | |S| =

2 ∧ S ⊆ M}.
An (AND-)circuit over X is a directed acyclic graph which consists of

n nodes called input and the other nodes called AND-gate. Each variable
x ∈ X is associated to exactly one of n input nodes. Input nodes have
indegree zero and arbitrary outdegree. AND-gate nodes have indegree two
and arbitrary outdegree. The size of a circuit C is equal to the number of
AND-gates in C. A circuit C computes a monomial M if the output of some
node in C is equal to M . It computes a set M of monomials if it computes
all monomials in M.

The Minimum-AND-Circuit (Min-AC) problem is defined as follows:
Given a set of monomials M = {M1, . . . , Mk} over a set of Boolean in-
put variables X = {x1, . . . , xn}, find a circuit C of minimum size which
computes M.

The total input size of Min-AC is defined as
P

M∈M |M |. In this note,
we consider only Min-3-AC, which is Min-AC with instances restricted to
monomials of degree at most three.

Let S ⊆ X. The multiplicity of S in M is the number of occurrences of
S in M as a submonomial, i.e.,

multM(S) = |{M ∈M | S ⊆ M}|.

The maximum multiplicity of M is defined by

mult(M) = max
|S|≥2

multM(S).

It is equal to the number of occurrences of the most frequent pair of variables
in M.

The k-Set Cover problem is defined as follows:
Given a universal set U and a collection C of subsets of U such that each
subset in C has a cardinality of at most k, find a minimal subcollection
C
� ⊆ C whose union is U .

3. Approximation algorithms

3.1. Algorithm for Min-3-AC with bounded multiplicity

In this subsection, we present our approximation algorithm for Min-3-AC
with bounded multiplicity via k-Set-Cover and give improved approximation
ratios for the case that the maximum multiplicity µ is three or four. In fact,
the algorithm gives improved approximation ratios also for the case that
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A Boolean monomial over a set of boolean variables                           is an AND-product of 
variables of a subset of      !  

Table 1: Approximation ratios for Min-3-AC

maximum multiplicity 2 3 4 5 · · · unbounded
Arpe and Manthey [1] P 1.25 1.26 1.27 1.278

Our results - 1.125 1.185 1.198 1.199

a complexity theoretic standpoint, and showed some results including ap-
proximation algorithms, APX-hardness and fixed parameter tractability. For
details of the results and the background, see their paper [1].

Arpe and Manthey [1] have shown that Min-3-AC, which is Min-AC with
instances restricted to monomials of degree at most three, is APX-hard
and have given three approximation algorithms called Cover, Match and
Greedy. The algorithm Greedy yields an approximation ratio of 1.278.
On the other hand, for the case that the degree d is general, the best known
approximation ratio is d− 3/2, which nearly equals a trivial approximation
ratio d−1. It remains open if Min-d-AC is approximable with a factor of o(d)
or not. In this note, we give improved approximation ratios for Min-3-AC.

Our main idea is as follows. The main part of the algorithm Cover
is computing approximately a minimum vertex cover of a three-uniform
hypergraph which is obtained from a Min-3-AC instance. The Vertex Cover
problem of hypergraphs is essentially equivalent to the Set Cover problem.
In this note, we use representation by Set Cover. The multiplicity of a set
of Boolean monomials is the number of occurrences of each submonomial of
size at least two. If the multiplicity of a Min-3-AC instance is at most k, then
we can easily show that the cardinality of sets of Set Cover becomes at most
k. Such Set Cover problem is called k-Set Cover and can be approximable
with a factor of Hk−1/2, where Hk =

P
k

i=1
1
i

[3]. By approximation of k-Set
Cover, we improve approximation ratios for the Min-3-AC problem restricted
to instances of bounded multiplicity (Sect. 3.1). Moreover, the improvement
of approximation ratios for the case that the multiplicity is bounded yields
an improved approximation ratio of 1.199 for the Min-3-AC problem with
unbounded multiplicity (Sect. 3.2). See Table 1 to compare our results with
the previous results.

2. Preliminaries

A (Boolean) monomial over a set of Boolean variables X = {x1, . . . , xn}
is an AND-product of variables of a subset of X. We identify a monomial
M = xi1 ∧ · · · ∧ xid with the subset {xi1 , . . . , xid}, which we denote by M

2
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of approximation ratios for the case that the multiplicity is bounded yields
an improved approximation ratio of 1.199 for the Min-3-AC problem with
unbounded multiplicity (Sect. 3.2). See Table 1 to compare our results with
the previous results.

2. Preliminaries

A (Boolean) monomial over a set of Boolean variables X = {x1, . . . , xn}
is an AND-product of variables of a subset of X. We identify a monomial
M = xi1 ∧ · · · ∧ xid with the subset {xi1 , . . . , xid}, which we denote by M
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PRELIMINARIES

Preliminaries 2/2
An AND-circuit is a DAG that consists of input nodes and other nodes called AND-gates!  

Every  input node can have in-degree 0 and arbitrary out-degree. Every AND-gate has in-degree 
2 and arbitrary out-degree!  

*
Input node

*
AND-gate

A circuit     computes a set of monomials      if all monomials in      are properly evaluated in !  

again. The degree of M is |M |. We denote by
°
M

2

¢
the set {S ⊆ X | |S| =

2 ∧ S ⊆ M}.
An (AND-)circuit over X is a directed acyclic graph which consists of

n nodes called input and the other nodes called AND-gate. Each variable
x ∈ X is associated to exactly one of n input nodes. Input nodes have
indegree zero and arbitrary outdegree. AND-gate nodes have indegree two
and arbitrary outdegree. The size of a circuit C is equal to the number of
AND-gates in C. A circuit C computes a monomial M if the output of some
node in C is equal to M . It computes a set M of monomials if it computes
all monomials in M.

The Minimum-AND-Circuit (Min-AC) problem is defined as follows:
Given a set of monomials M = {M1, . . . , Mk} over a set of Boolean in-
put variables X = {x1, . . . , xn}, find a circuit C of minimum size which
computes M.

The total input size of Min-AC is defined as
P

M∈M |M |. In this note,
we consider only Min-3-AC, which is Min-AC with instances restricted to
monomials of degree at most three.

Let S ⊆ X. The multiplicity of S in M is the number of occurrences of
S in M as a submonomial, i.e.,

multM(S) = |{M ∈M | S ⊆ M}|.

The maximum multiplicity of M is defined by

mult(M) = max
|S|≥2

multM(S).

It is equal to the number of occurrences of the most frequent pair of variables
in M.

The k-Set Cover problem is defined as follows:
Given a universal set U and a collection C of subsets of U such that each
subset in C has a cardinality of at most k, find a minimal subcollection
C
� ⊆ C whose union is U .

3. Approximation algorithms

3.1. Algorithm for Min-3-AC with bounded multiplicity

In this subsection, we present our approximation algorithm for Min-3-AC
with bounded multiplicity via k-Set-Cover and give improved approximation
ratios for the case that the maximum multiplicity µ is three or four. In fact,
the algorithm gives improved approximation ratios also for the case that

3
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MINIMUM AND-CIRCUIT 

Minimum AND-Circuit 
Given a set of monomials                                   over a set of Boolean input variables  
we aim to find a circuit of minimum size which computes 
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MINIMUM AND-CIRCUIT COVER

Algorithm Cover-µ

5 ≤ µ ≤ 13, which is not mentioned below since we give more improved
approximation ratios in the next subsection.

For Min-3-AC, without loss of generality, we can assume that all mono-
mials have degree exactly three as Arpe and Manthey [1] have shown. If a
given instance includes monomials with degree one or two, then we solve an
instance with degree exactly three which is preprocessed as follows, instead
of the original instance. Firstly, we delete all monomials with degree one
from the instance, since such monomial needs no AND-gate. For each mono-
mial with degree two, we add an AND-gate which computes the monomial.
Moreover, if some other monomials with degree three include the monomial
with degree two as a submonomial, we add AND-gates which compute the
monomials with degree three. Since added AND-gates are necessarily needed
gates, we can do such preprocess. Thus we assume that all monomials have
degree exactly three. Moreover, we can assume that circuits consist of two
layers of AND-gates. The gates of the first layer compute monomials with
degree two, and the gates of the second layer output monomials with degree
three.

In our algorithm, we first reduce Min-3-AC with maximum multiplicity
µ to µ-Set Cover. Let M be a Min-3-AC instance and C be a circuit for
M. The second layer of C contains |M| gates. In the first layer, for each
monomial M ∈M, one of the pairs contained in

°
M

2

¢
has to be computed.

Thus, the goal is to find a minimum set of pairs such that each monomial
M ∈ M has at least one pair. This corresponds to finding a minimum
set cover of a Set Cover instance S(M) obtained as follows. The universal
set U equals M. For each pair S contained in

S
M∈M

°
M

2

¢
, we add the set

{M ∈ M | S ∈
°
M

2

¢
} to a collection C. Since the multiplicity of a Min-3-

AC instance is at most µ, (U,C) is a µ-Set Cover instance. Our algorithm
Coverµ is based on the reduction as above.

Algorithm Coverµ for Min-3-AC with maximum multiplicity µ.

1: Input M = {M1, . . . , Mk}.
2: Compute the µ-Set Cover instance S(M).
3: Compute a set cover for S(M).
4: Output the circuit corresponding to the set cover.

The number of gates in the second layer of optimal circuits is k, where
k is the number of monomials in M. Let � be the number of gates in the
first layer of optimal circuits.

4

w.l.o.g. monomials 
have degree 3

How the reduction to µ-Set Cover works:

!  The universal set     is 
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Algorithm Cover-µ

M = {M1 : (a ^ b ^ d),M2 : (b ^ d ^ e),M3 : (b ^ c ^ d),M4 : (a ^ d ^ e)}

1

M = {M1 : (a ^ b ^ d),M2 : (b ^ d ^ e),M3 : (b ^ c ^ d),M4 : (a ^ d ^ e)}
�M1

2

�
= {(a, b), (b, d), (a, d)}

�M2

2

�
= {(b, d), (d, e), (b, e)}

�M3

2

�
= {(b, c), (c, d), (b, d)}

�M4

2

�
= {(a, d), (d, e), (a, e)}

1

U = M

C = {(a, b) : {M1}, (b, d) : {M1,M2,M3}, (a, d) : {M1,M4},

(d, e) : {M2,M4}, (b, e) : {M2}, (b, c) : {M3}, (c, d) : {M3}, (a, e) : {M4}}

1

U = M

C = {(a, b) : {M1}, (b, d) : {M1,M2,M3}, (a, d) : {M1,M4},

(d, e) : {M2,M4}, (b, e) : {M2}, (b, c) : {M3}, (c, d) : {M3}, (a, e) : {M4}}

1

3-Set Cover

MINIMUM AND-CIRCUIT COVER
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Approximation

Lemma 3.1. For µ ≥ 3, Coverµ outputs a circuit for M of size at most

k + (Hµ − 1
2)�, where Hµ =

P
µ

i=1
1
i
.

Proof. µ-Set Cover is approximable with a factor of Hµ − 1
2 [3]. The lemma

follows from the discussion above.

Let ρCoverµ be the approximation ratio of Coverµ. By Lemma 3.1, for
µ ≥ 3,

ρCoverµ ≤
k + (Hµ − 1

2)�
k + �

, increasing in �.

Theorem 3.2. The Min-3-AC problem restricted to instances of maximum

multiplicity three and four is approximable with a factor of 1.125 and 45/38 <

1.185, respectively.

Proof. Match achieves the following approximation ratio [1]:

ρMatch ≤
3
2k + 1

2�

k + �
, decreasing in �.

For each µ ∈ {3, 4}, we execute Coverµ and Match, and output the smaller
circuit of the two circuits which are output by the two algorithms. The
approximation ratio is at most

min{ρ1(�), ρ2(�)}, (1)

where ρ1(�) = k+(Hµ− 1
2 )�

k+�
and ρ2(�) =

3
2k+ 1

2 �

k+�
. We have ρ1(�) ≥ ρ2(�) for

� ≥ k

2(Hµ−1) . Since ρ1 is monotonically increasing and ρ2 is monotonically
decreasing in �, the minimum in Eq. (1) is attained for � = 1

2(Hµ−1)k. It is

ρ1(
1

2(Hµ − 1)
k) =

2(Hµ − 1) + (Hµ − 1
2)

2(Hµ − 1) + 1
=

6Hµ − 5
4Hµ − 2

Since H3 = 11/6 and H4 = 25/12, the proof is completed.

The k-Set Cover problem can be solved in polynomial time if k = 2 [3, 4].
Therefore Cover2 gives an alternative proof that the Min-3-AC problem
with maximum multiplicity two is in P, which has been proved by Arpe and
Manthey [1].

5

Lemma 3.1. For µ ≥ 3, Coverµ outputs a circuit for M of size at most

k + (Hµ − 1
2)�, where Hµ =

P
µ

i=1
1
i
.

Proof. µ-Set Cover is approximable with a factor of Hµ − 1
2 [3]. The lemma

follows from the discussion above.

Let ρCoverµ be the approximation ratio of Coverµ. By Lemma 3.1, for
µ ≥ 3,

ρCoverµ ≤
k + (Hµ − 1

2)�
k + �

, increasing in �.

Theorem 3.2. The Min-3-AC problem restricted to instances of maximum

multiplicity three and four is approximable with a factor of 1.125 and 45/38 <

1.185, respectively.

Proof. Match achieves the following approximation ratio [1]:

ρMatch ≤
3
2k + 1

2�

k + �
, decreasing in �.

For each µ ∈ {3, 4}, we execute Coverµ and Match, and output the smaller
circuit of the two circuits which are output by the two algorithms. The
approximation ratio is at most

min{ρ1(�), ρ2(�)}, (1)

where ρ1(�) = k+(Hµ− 1
2 )�

k+�
and ρ2(�) =

3
2k+ 1

2 �

k+�
. We have ρ1(�) ≥ ρ2(�) for

� ≥ k

2(Hµ−1) . Since ρ1 is monotonically increasing and ρ2 is monotonically
decreasing in �, the minimum in Eq. (1) is attained for � = 1

2(Hµ−1)k. It is

ρ1(
1

2(Hµ − 1)
k) =

2(Hµ − 1) + (Hµ − 1
2)

2(Hµ − 1) + 1
=

6Hµ − 5
4Hµ − 2

Since H3 = 11/6 and H4 = 25/12, the proof is completed.

The k-Set Cover problem can be solved in polynomial time if k = 2 [3, 4].
Therefore Cover2 gives an alternative proof that the Min-3-AC problem
with maximum multiplicity two is in P, which has been proved by Arpe and
Manthey [1].

5

MINIMUM AND-CIRCUIT COVER

Let     be the number of gates on the second layer of the optimal circuit!  

Let     be the number of gates on the first layer of the optimal circuit!  
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MINIMUM AND-CIRCUIT GREEDY

Algorithm Greedy-µ

3.2. Algorithm for Min-3-AC with unbounded multiplicity

In this subsection, we present our approximation algorithm for Min-3-AC
with unbounded multiplicity and give an improved approximation ratio of
1.199. The ratio is slightly improved if the maximum multiplicity is at most
twelve.

Our algorithm Greedyµ for Min-3-AC with unbounded multiplicity is a
simple generalization of the algorithm Greedy by Arpe and Manthey [1].
Only step 2 and 8 have been generalized. Greedyµ is adjusted with the
parameter µ to give the best approximation ratio. Greedy2 is equivalent
to Greedy. Greedyµ greedily adds gates for pairs that occur most fre-
quently in M until each remaining pair is shared by at most µ monomials.
Then it uses the known best algorithm Algµ for Min-3-AC with maximum
multiplicity µ.

Algorithm Greedyµ for Min-3-AC with unbounded multiplicity.

1: Input M = {M1, . . . , Mk}.
2: While there exists an S ∈

°
X

2

¢
such that |{M ∈M | S ⊆ M}| ≥ µ + 1:

3: Arbitrarily select S ∈
°
X

2

¢
with maximum |{M ∈M | S ⊆M}|.

4: Add a gate computing S to C.
5: For each M ∈M with S ⊆M :
6: Add a gate computing M to C.
7: M←M\ {M}.
8: C� ← Algµ(M).
9: C ← C ∪ C�

10: Output C.

Let ρµ be the approximation ratio of Algµ. As shown in the previous
subsection, ρ2 = 1, ρ3 ≤ 1.125, and ρ4 ≤ 45/38 < 1.185. The number of
gates in the second layer of optimal circuits is k, where k is the number of
monomials in M. Let � be the number of gates in the first layer of optimal
circuits.

Lemma 3.3. For µ ≥ 2, Greedyµ outputs a circuit for M of size at most

max{µ+2
µ+1 , ρµ}k + ρµ�.

Proof. Let k1 be the number of monomials in M that are computed by C
after steps 2-7 and k2 be the number of monomials in M that are computed
by C� after step 8. Since each set S selected in step 3 is shared by at least
(µ + 1) monomials, at most k1/(µ + 1) gates are added to C in step 4. In
addition, k1 gates are added to C in step 6. Let M� be the set of monomials

6

k1 
monomials

k2 
monomials

k1/(µ+1) gates

k1 gates

 ρ(k2 + l  ) gates

k1/(µ+1)+k1+ρ(k2 + l  )  = 

that remain in M after steps 2-7. Since k2+� gates are sufficient to compute
M�, the number of gates in C� after step 8 is at most ρµ(k2 + �). Since
k1, k2 ≤ k,

µ + 2
µ + 1

k1 + ρµ(k2 + �) ≤ max
Ω

µ + 2
µ + 1

, ρµ

æ
k + ρµ�.

By Lemma 3.3,

ρGreedyµ ≤
max{µ+2

µ+1 , ρµ}k + ρµ�

k + �
.

Greedyµ is most balanced and gives the best approximation ratios when
µ = 4. (This value may change if ρµ gets smaller due to improved approxi-
mation algorithms.) By Theorem 3.2, ρ4 ≤ 45/38. Thus,

ρGreedy4 ≤
6
5k + 45

38�

k + �
, decreasing in �. (2)

Since � ≥ 0 and ρGreedy4 is monotonically decreasing in �,

ρGreedy4 ≤
6
5k + 45

38�

k + �
≤ 6

5
= 1.2.

Thus Greedy4 achieves an approximation ratio of 1.2. In the rest, the ratio
is slightly improved.

Theorem 3.4. The Min-3-AC problem is approximable with a factor of

231e
2 − 225

193e2 − 190
< 1.199.

Proof. Greedy achieves the following approximation ratio [1]:

ρGreedy ≤
(1 + e

−2)k + 2�

k + �
, increasing in �. (3)

We execute Greedy4 and Greedy, and output the smaller circuit of the
two outputs. By the similar argument of the proof of Theorem 3.2 for Eq.
(2) and Eq. (3), the proof is completed.

7
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MINIMUM AND-CIRCUIT GREEDY

Approximation

3.2. Algorithm for Min-3-AC with unbounded multiplicity

In this subsection, we present our approximation algorithm for Min-3-AC
with unbounded multiplicity and give an improved approximation ratio of
1.199. The ratio is slightly improved if the maximum multiplicity is at most
twelve.

Our algorithm Greedyµ for Min-3-AC with unbounded multiplicity is a
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Only step 2 and 8 have been generalized. Greedyµ is adjusted with the
parameter µ to give the best approximation ratio. Greedy2 is equivalent
to Greedy. Greedyµ greedily adds gates for pairs that occur most fre-
quently in M until each remaining pair is shared by at most µ monomials.
Then it uses the known best algorithm Algµ for Min-3-AC with maximum
multiplicity µ.

Algorithm Greedyµ for Min-3-AC with unbounded multiplicity.

1: Input M = {M1, . . . , Mk}.
2: While there exists an S ∈

°
X

2

¢
such that |{M ∈M | S ⊆ M}| ≥ µ + 1:

3: Arbitrarily select S ∈
°
X

2

¢
with maximum |{M ∈M | S ⊆M}|.

4: Add a gate computing S to C.
5: For each M ∈M with S ⊆M :
6: Add a gate computing M to C.
7: M←M\ {M}.
8: C� ← Algµ(M).
9: C ← C ∪ C�

10: Output C.

Let ρµ be the approximation ratio of Algµ. As shown in the previous
subsection, ρ2 = 1, ρ3 ≤ 1.125, and ρ4 ≤ 45/38 < 1.185. The number of
gates in the second layer of optimal circuits is k, where k is the number of
monomials in M. Let � be the number of gates in the first layer of optimal
circuits.

Lemma 3.3. For µ ≥ 2, Greedyµ outputs a circuit for M of size at most

max{µ+2
µ+1 , ρµ}k + ρµ�.

Proof. Let k1 be the number of monomials in M that are computed by C
after steps 2-7 and k2 be the number of monomials in M that are computed
by C� after step 8. Since each set S selected in step 3 is shared by at least
(µ + 1) monomials, at most k1/(µ + 1) gates are added to C in step 4. In
addition, k1 gates are added to C in step 6. Let M� be the set of monomials

6

that remain in M after steps 2-7. Since k2+� gates are sufficient to compute
M�, the number of gates in C� after step 8 is at most ρµ(k2 + �). Since
k1, k2 ≤ k,

µ + 2
µ + 1

k1 + ρµ(k2 + �) ≤ max
Ω

µ + 2
µ + 1

, ρµ

æ
k + ρµ�.

By Lemma 3.3,

ρGreedyµ ≤
max{µ+2

µ+1 , ρµ}k + ρµ�

k + �
.

Greedyµ is most balanced and gives the best approximation ratios when
µ = 4. (This value may change if ρµ gets smaller due to improved approxi-
mation algorithms.) By Theorem 3.2, ρ4 ≤ 45/38. Thus,

ρGreedy4 ≤
6
5k + 45

38�

k + �
, decreasing in �. (2)

Since � ≥ 0 and ρGreedy4 is monotonically decreasing in �,

ρGreedy4 ≤
6
5k + 45

38�

k + �
≤ 6

5
= 1.2.

Thus Greedy4 achieves an approximation ratio of 1.2. In the rest, the ratio
is slightly improved.

Theorem 3.4. The Min-3-AC problem is approximable with a factor of

231e
2 − 225

193e2 − 190
< 1.199.

Proof. Greedy achieves the following approximation ratio [1]:

ρGreedy ≤
(1 + e

−2)k + 2�

k + �
, increasing in �. (3)

We execute Greedy4 and Greedy, and output the smaller circuit of the
two outputs. By the similar argument of the proof of Theorem 3.2 for Eq.
(2) and Eq. (3), the proof is completed.
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CONCLUSION

Conclusion
Table 1: Approximation ratios for Min-3-AC

maximum multiplicity 2 3 4 5 · · · unbounded
Arpe and Manthey [1] P 1.25 1.26 1.27 1.278

Our results - 1.125 1.185 1.198 1.199

a complexity theoretic standpoint, and showed some results including ap-
proximation algorithms, APX-hardness and fixed parameter tractability. For
details of the results and the background, see their paper [1].

Arpe and Manthey [1] have shown that Min-3-AC, which is Min-AC with
instances restricted to monomials of degree at most three, is APX-hard
and have given three approximation algorithms called Cover, Match and
Greedy. The algorithm Greedy yields an approximation ratio of 1.278.
On the other hand, for the case that the degree d is general, the best known
approximation ratio is d− 3/2, which nearly equals a trivial approximation
ratio d−1. It remains open if Min-d-AC is approximable with a factor of o(d)
or not. In this note, we give improved approximation ratios for Min-3-AC.

Our main idea is as follows. The main part of the algorithm Cover
is computing approximately a minimum vertex cover of a three-uniform
hypergraph which is obtained from a Min-3-AC instance. The Vertex Cover
problem of hypergraphs is essentially equivalent to the Set Cover problem.
In this note, we use representation by Set Cover. The multiplicity of a set
of Boolean monomials is the number of occurrences of each submonomial of
size at least two. If the multiplicity of a Min-3-AC instance is at most k, then
we can easily show that the cardinality of sets of Set Cover becomes at most
k. Such Set Cover problem is called k-Set Cover and can be approximable
with a factor of Hk−1/2, where Hk =

P
k

i=1
1
i

[3]. By approximation of k-Set
Cover, we improve approximation ratios for the Min-3-AC problem restricted
to instances of bounded multiplicity (Sect. 3.1). Moreover, the improvement
of approximation ratios for the case that the multiplicity is bounded yields
an improved approximation ratio of 1.199 for the Min-3-AC problem with
unbounded multiplicity (Sect. 3.2). See Table 1 to compare our results with
the previous results.

2. Preliminaries

A (Boolean) monomial over a set of Boolean variables X = {x1, . . . , xn}
is an AND-product of variables of a subset of X. We identify a monomial
M = xi1 ∧ · · · ∧ xid with the subset {xi1 , . . . , xid}, which we denote by M

2

H. Morizumi, “Improved approximation algorithms for minimum AND-circuits  
problem via k-set cover, Information Processing Letters”, 
Information Processing Letters, 111(5), pp. 218-221, 2011. 
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