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Abstract

In this paper, we present efficient VLSI layouts of sev-
eral hypercubic networks. We show that an N-node hyper-
cube and an N-node cube-connected cycles (CCC) graph
can be laid out in 4N2=9 + o(N2) and 4N2=(9log2

2 N) +
o(N2= log2 N) areas, respectively, both of which are optimal
within a factor of 1:7̄+ o(1). We introduce the multilayer
grid model, and present efficient layouts of hypercubes that
use more than 2 layers of wires. We derive efficient layouts
for butterfly networks, generalized hypercubes, hierarchical
swapped networks, and indirect swapped networks, that are
optimal within a factor of 1+o(1). We also present efficient
layouts for folded hypercubes, reduced hypercubes, recur-
sive hierarchical swapped networks, and enhanced-cubes,
which are the best results reported for these networks thus
far.

1. Introduction

The derivation of efficient VLSI layouts for intercon-
nection networks is important, since it improves the cost-
performance of the resulting parallel architecture, both by
reducing its cost (fewer chips, boards, and assemblies) and
by lowering various performance hindrances, such as signal
propagation delay, drive power, and fraction of data trans-
fers to off-chip destinations. Efficient layouts for several in-
terconnection networks can be found in [5, 6, 8, 12].

Hypercubes, butterfly networks [13], and cube-
connected cycles (CCC) [16] are among the most important
interconnection networks. In [6], a collinear layout of an
N-node hypercube that requires N� log2 N tracks was pro-
posed. In this paper, we show that the collinear layout of
a hypercube can be considerably improved to one that uses
b2N=3c tracks, which is within a factor of 1:3̄+ o(1) from
a trivial lower bound. We also show that an N-node hyper-
cube can be laid out in 4N2=9+o(N2) area, which is within
a factor of 1:7̄+ o(1) from a trivial lower bound and im-
proves the layout area given in [6] by a factor of 2:25+
o(1). We also show that an N-node CCC can be laid out in

4N2=(9log2
2 N)+ o(N2= log2 N) area, which is smaller than

the layout area given in [7] by a factor of 1:125+o(1), and
is within a factor of 1:7̄+o(1) from a lower bound. The lay-
outs for the hypercube and CCC given in this paper are the
best results reported thus far for these networks.

We introduce the multilayer 2-D grid and multilayer 3-
D grid models for VLSI layouts of networks. The moti-
vations for using the multilayer grid model include signif-
icant reduction in layout area, volume, and maximum wire
length. In particular, we show that an N-node hypercube can

be laid out in 16N2

9L2 + o
�

N2

L2

�
area, 16N2

9L + o
�

N2

L

�
volume,

and 2N
3L +o

�
N
L

�
maximum wire length when we use L layers

of wires, L is even, and L = o(
p

N= logN).
We derive tight bounds on the VLSI area of generalized

hypercubes, hierarchical swapped networks (HSNs) [23,
25], and indirect swapped networks (ISNs) [22], which are
optimal within a factor of 1+ o(1). Moreover, we present
efficient layouts for butterfly networks [13], folded hyper-
cubes [1], reduced hypercubes (RH) [29], recursive hierar-
chical swapped networks (RHSNs) [23, 25], and enhanced-
cubes [21], which are the best results reported for these net-
works so far in the literature. Our layout method and lower
bound techniques can also be extended to a variety of other
networks [25, 28].

The organization of the remainder of the paper is the fol-
lowing. In Section 2, we present efficient layouts for hyper-
cubes, folded hypercubes, CCC, and reduced hypercubes.
In Section 3, we introduce the multilayer grid model and
present multilayer layouts of hypercubes. In Section 4, we
present efficient layouts for butterfly networks, generalized
hypercubes, HSNs, RHSNs, and ISNs. In Section 5, we
show that several of the layouts given in Section 4 have ar-
eas that are optimal within a factor of 1+o(1). In Section 6
we present our conclusions.

2. VLSI layouts for hypercubes, CCCs, and re-
lated networks

In this section, we present a method for laying out hyper-
cubes, folded hypercubes, CCC, and reduced hypercubes.



We use the extended version [8, 17, 25] of the grid model,
also called Thompson’s model [18], for the VLSI layout of
networks whose node degrees may be larger than 4. In this
model, a network is viewed as a graph whose nodes corre-
spond to processing elements and edges correspond to wires.
The graph is then embedded in a 2-D grid, where wires have
unit width and a node of degree d occupies a square of side
d. The wires can run either horizontally or vertically along
grid lines.

The area of a layout is defined as the area of the smallest
rectangle that contains all the nodes and wires. When there
are two layers of wires, it is guaranteed that we can lay out
the network within the area. In Section 3, we modify layouts
derived in this section to obtain layouts that use more than
two layers of wires and have smaller area

2.1. Efficient layouts for hypercubes and several
variants

In this subsection, we first derive a collinear layout for
the hypercube and then use it to obtain efficient 2-D layouts
for hypercubes, folded hypercubes, and their variants.

In a collinear layout all nodes are placed on the same line.
A collinear layout that requires N� log2 N tracks was pre-
sented in [6] for an N-node hypercube. In what follows, we
improve on their result by finding a collinear layout that uses
only b2N=3c tracks.

To describe the hypercube layout we use a bottom-up
approach, starting with a 2-dimensional hypercube, and in-
ductively moving to hypercubes of higher dimensions. A
collinear layout of a 2-dimensional hypercube can be ob-
tained by placing the 4 nodes along a row, connecting node
0 with node 1, and node 1 with node 3, through wires in the
first track, and then connecting node 0 with node 2, and node
2 with node 3, through wires in the second track (see Fig.
1a). Clearly, this layout requires 2 tracks.

Assume that we have a collinear layout for an n-cube that
requires f (n) tracks, where n is even. To obtain the collinear
layout of an (n+ 1)-cube, we start with the layouts of two
n-cubes. By doubling the horizontal space, we can place the
ith node of the second layout adjacent (from the right) to the
ith node of the first layout. We also double the number of
tracks (i.e., vertical space) to accommodate the 2 f (n) tracks
of the two layouts. Moreover, to connect the two n-cubes
into an (n+1)-cube, we need an extra track which contains
paths connecting adjacent nodes (i.e., the ith nodes of the
two layouts). Therefore, the number of tracks required for
the collinear layout of the (n+1)-dimensional hypercube is
f (n+1) = 2 f (n)+1, assuming that n is even.

To obtain the collinear layout of an (n+2)-cube, we start
with the layouts of four n-cubes. By increasing the horizon-
tal space by a factor of 4, we can place the nodes with the
same ID of the four layouts adjacent to each other. We also

have to increase the number of tracks by a factor of 4 to ac-
commodate the 4 f (n) tracks of the four layouts. Finally, to
connect the four n-cubes into an (n+2)-cube, we need two
extra tracks for laying out the paths that connects each set of
4 nodes of the n-cubes that have the same ID as a 2-cube (see
Fig. 1b). Therefore, we have f (n+ 2) = 4 f (n)+ 2 when n
is even. Since f (2) = 2, we obtain the following theorem.

Theorem 2.1 The number of tracks required for the
collinear layout of an N-node hypercube is b 2N

3 c.

Proof: When n is even, we have

f (n) = 4 f (n�2)+2

and f (0) = 0, where n = log2 N. Therefore,

f (n) = 22 f (n�2)+21 = 24 f (n�4)+23+21
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To lay out an n-cube on a 2-D grid, we let n = n1 + n2,
and use 2n1 copies of the collinear layout of an n2-cube,
each placed along a row. We then connect the 2n1 nodes
that belong to the same column (i.e., nodes that have the
same ID within each of the n2-cubes) vertically according
to the collinear layout of an n1-cube (see Fig. 1c). Note that
when n2 (and/or n1) is odd, we can eliminate 2n1 horizontal
tracks (and/or 2n1 vertical tracks, respectively) by moving
the wires connecting neighboring nodes to horizontal tracks
(and/or vertical tracks, respectively) between nodes. When
n2 (and/or n1) is even, we can also remove 2n1 horizontal
tracks (and/or 2n1 vertical tracks, respectively) after some
minor modifications at the expense of longer wires. Since
in the VLSI model a node of degree log2 N requires a square
of side log2 N, we need an extra O(N

p
N logN) area to ac-

commodate the nodes. By choosing n1 = Θ(n2), we obtain
the following theorem.

Theorem 2.2 An N-node hypercube can be laid out in
4
9 N2 +o(N2) area.

The layout area given in Theorem 2.2 for the hypercube
improves the corresponding area given in [6] by a factor of
2:25+o(1), and is the best result reported thus far for hyper-
cubes. The area is within a factor of 1:7̄+o(1) from a trivial
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Figure 1. collinear layouts of (a) a 2-cube and
(b) a 4-cube. (c) A 2-D layout of a 5-cube.

lower bound N2=4 [which follows from the fact that the area
of a graph is at least equal to B2 [19, 25], where B = N=2 is
the bisection width of a hypercube, or from Lemma 5.1 of
Section 5 since a total exchange task in a hypercube requires
N=2 steps [20]. The proposed hypercube layout has max-
imum wire length N=3+ o(N), which is (slightly) shorter
than the best previous result [10] for hypercubes of (cur-
rently) practical sizes (e.g., N� 214 = 16K), and has smaller
area by a factor of 2:25+ o(1) at the same time. Note that
we can move the longer wires (and other wires belong to the
same tracks) to the first 2n2�1 horizontal tracks (or the first
2n1�1 vertical tracks, respectively) in order to (slightly) re-
duce the maximum wire length.

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [21]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node S has a link connecting it to the
node whose label is the bitwise complement of S. By adding
additional links to the hypercube layout of Theorem 2.2, we
can lay out a folded hypercube in 49

36 N2 + o(N2) area, and
an enhanced-cube in 25

9 N2 + o(N2) area. More precisely,
we first lay out an N-node hypercube in a square of side
2
3 N+o(N). To lay out an additional link, we need at most an
additional vertical track and an additional horizontal track,
in addition to the two ending segments connecting the link
to two nodes.

Since there are N=2 additional links in a folded hyper-
cube, we need at most N=2 extra vertical and horizontal
tracks to accommodate all the diameter links. Therefore, the

area for the layout of a folded hypercube is

�
7
6

N+o(N)

�
�
�

7
6

N+o(N)

�
=

49
36

N2 +o(N2):

Since there are N additional links in an enhanced-cube, we
need at most N vertical and horizontal tracks to accommo-
date all the additional links. Therefore, the area for the lay-
out of an enhanced-cube is 25

9 N2+o(N2). 2

The preceding layouts for folded hypercubes and
enhanced-cubes improve the areas of the corresponding lay-
outs given in [21] by constant factors.

2.2. Efficient layouts for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [16]. A reduced hypercube, RH(log2 n; log2 n) [29],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube.

Theorem 2.3 An N-node CCC or RH(log2 n; log2 n) can be
laid out in

4N2

9 log2
2 N

+o

�
N2

log2 N

�

area.

Proof: We first lay out an n-cube using the 2-D layout intro-
duced in Subsection 2.1, and then lay out the n-node cycles
within each of the hypercube nodes. Since the size of an n-
dimensional CCC is N = n2n and its area is dominated by
its hypercube links, which requires 2n+2=9+o(2n) area, an
N-node CCC can be laid out in

4N2

9 log2
2 N

+o

�
N2

log2 N

�

area. Using the same layout method, the reduced hypercube
can be laid out in asymptotically the same area. 2

In [16], layouts of area 2N2

log2
2 N

+ o
�

N2

log2 N

�
and 4N2

3 log2
2 N

+

o
�

N2

log2 N

�
were proposed for the CCC graph. Our layout has

area smaller than that of the layouts given in [16] by a factor
of at least 3+o(1), and smaller than that of the more recent
layouts given in [7] by a factor of 1:125+o(1). The layout
area given in Theorem 2.3 is within a factor of 1:7̄+ o(1)
from the lower bound given in [7] and is the best result re-
ported thus far for the CCC network.



3. Layouts under the multilayer grid model

In this section, we introduce the multilayer grid model for
VLSI layouts of networks. We then derive efficient multi-
layer layouts for hypercubes.

3.1. The multilayer grid model

In the multilayer grid model, a network is viewed as a
graph whose nodes correspond to processing elements and
edges correspond to wires. The nodes and edges of the graph
are then embedded in a 3-D grid, where edges have unit
width, can run along grid lines, but cannot cross each other
(i.e., the paths for embedding these edges must be edge- and
node-disjoint). The area A of a layout is defined as the area
of the smallest rectangle along the x-y directions that con-
tains all the nodes and wires. The volume of a layout is equal
to the number L of layers times its area A.

In the multilayer 2-D grid model, the nodes of the graph
are embedded in the 2-D grid of the first layer (i.e., z = 1),
where a node of degree d occupies a square of side d. Note
that a network with area A under the extended grid model
can be laid out with area no larger than A under the multi-
layer 2-D grid model with L = 2 layers. In the multilayer
3-D grid model, the nodes of the graph are embedded in LA

layers of the 3-D grid, where a node of degree d occupies
a d=h� d=h� h cuboid and 1 � h � LA � L. These LA

layers are called “active layers.” The multilayer 2-D grid
model is a special case of the multilayer 3-D grid model
with LA = 1 active layer. Note that a d=h�d=h�h cuboid
node requires h active layers for its implementation, while a
d�d�1 cuboid node requires only 1 active layer. Layouts
designed for these models can be easily modified to obtain
layouts with different assumptions on the size of nodes. The
cost of a layout under the multilayer grid model is a function
of A;L; and LA.

The motivations for using the multilayer grid model are
three folds: (1) some technologies can lay out wires using
more than 2 layers, leading to significant reduction in lay-
out area; (2) the volume of the layouts of many networks
may be reduced by a factor of approximately L=2 compared
to their layouts under the grid model; and (3) the maximum
length of wires in many networks may be reduced by a fac-
tor of approximately L=2. When we use L layers, the num-
ber of tracks in x and y directions may both be reduced by a
factor of about L=2 in many networks, for a factor of L2=4
reduction in its area compared to the layout under the grid
model, while the number of layers is only increased by a fac-
tor of L=2. This leads to items (1) and (2) and, therefore, the
cost of the resultant layout can be significantly reduced. As a
comparison, if we fold a layout derived for the grid model in
order to use all the available layers, the area can be reduced
by a factor of only L=2 and the volume cannot be reduced;

if we extended the collinear layout model to its multilayer
version, the volume cannot be reduced either since the area
can only be reduced by a factor of at most L=2 when L lay-
ers are used. The maximum wire lengths in many networks
are approximately proportional to the number of tracks in x
or y direction (or their sum). Therefore, if the numbers of
tracks in x and y directions are both reduced by a factor of
about L=2, the maximum wire length can also be reduced
by a factor of approximately L=2, leading to significant im-
provement in performance [item (3)]. As a comparison, the
maximum wire length in a collinear layout using L layers or
in a layout obtained by folding the layout derived using the
grid model remains similar in most cases. These arguments
will become clear by looking at the multilayer layouts de-
rived in the following subsections.

We can extend the multilayer grid model to the multilayer
layout model by allowing nodes and edges to run in other
specified directions. Layouts under this model may have
smaller area and volume compared with layouts under its
multilayer grid model counterpart. Moreover, wires in this
model may have different width and cross area, depending
on the technology used. For example, wires along the z di-
rection may have larger cross area in PCB. In what follows,
we focus on the multilayer 2-D grid model. Layouts under
other models will be reported in the near future.

3.2. The layout area and volume of hypercubes un-
der the multilayer grid model

In this subsection we present efficient multilayer layouts
for hypercubes.

We first derive hypercube layouts with an even number
L of layers. The multilayer 2-D grid layout of a hypercube
can be obtained from its 2-D grid layout by partitioning all
the horizontal (resp., vertical) tracks above each row (resp.,
to the right of each column) of nodes into L=2 groups, each

of which has at most k1 = d 2b2n2+1=3c
L e (or d 2b2n2+1=3c�1

L e
if n2 is odd) horizontal tracks [resp., k2 = d 2b2n1+1=3c

L e (or

d 2b2n1+1=3c�1
L e if n1 is odd) vertical tracks] and is wired us-

ing two layers. More precisely, the vertical segments con-
necting the horizontal tracks of groups i (above each row)
and the vertical tracks of groups i (to the right of each col-
umn) are wired using layer 2i�1, and the horizontal tracks
of groups i and the horizontal segments connecting the ver-
tical tracks of groups i are wired using layer 2i, for i =
1;2; : : : ;L=2. When a link makes a turn in the 2-D grid lay-
out, its vertical and horizontal segments, wired in neighbor-
ing layers i�1 and i in the multilayer layout, should be con-
nected by a wire (or via) along the z direction.

When L= o(
p

N= logN), the area of the resultant L-layer
layout can be reduced from 4N2=9+ o(N2) under the grid



model to
16N2

9L2 +o

�
N2

L2

�
;

the maximum wire length of the L-layer layout can be re-
duced from N=3+o(N) to

2N
3L

+o

�
N
L

�
;

the total wire length of a routing path is 1:3̄N=L+ o(N=L);
and the volume of the L-layer layout can be reduced from
8N2=9+o(N2) (assuming wires cannot cross each other) to

16N2

9L
+o

�
N2

L

�
:

When L is odd, we simply partition horizontal tracks
into (L+ 1)=2 groups, wired on layers 1;3; : : : ;L, and par-
tition vertical tracks into (L�1)=2 groups, wired on layers
2;4; : : : ;L�1. We can also partition and wire them the other
way around. The area of the resultant layout is

16N2

9(L2�1)
+o

�
N2

L2

�

when L is odd and L = o(
p

N= logN).
These multilayer hypercube layouts are the best re-

sults reported in the literature thus far for L = 2;3; : : : ;
o(
p

N= logN) in terms of area and volume. Since we have
obtained area-efficient L-layer layouts for hypercubes, L =
2;3; : : : ;o(

p
N= logN), we can optimize the cost for imple-

mentation by minimizing the cost function f (A;L;LA = 1).
If a large number L = Ω(

p
N= logN) of layers are avail-

able and more than one active layer is available, we can de-
sign hypercube layouts under the multilayer 3-D grid model
to further reduce the layout area, maximum wire length, and
volume. To obtain multilayer 3-D layouts for an (n1+n2+
n3)-cube, we simply use 2n3 copies of a multilayer 2-D (n1+
n2)-cube layout, and connect nodes belonging to the same
grid point in a way similar to a collinear layout of an n3-
cube. More details will be reported in the near future.

4. VLSI layouts for several networks

In this section, we present efficient layouts for several in-
terconnection networks under the grid model.

4.1. Efficient layouts for generalized hypercubes,
HSNs and RHSNs

An l-level hierarchical swapped network, denoted by
HSN(l;G) [23, 25], is an l-level network consisting of M
level-l clusters, each of which is an HSN(l�1;G) network,

where M is the number of nodes in the nucleus G. Each of
the Ml�2 nuclei of a level-l cluster has a link connecting it
to each of the other M � 1 level-l clusters. If we view a
level-l cluster as a supernode, the HSN(l;G) becomes an M-
supernode complete graph with N=M2 edges between each
pair of supernodes.

Theorem 4.1 An N-node HSN(l;G) can be laid out using
N2=16+o(N2) area if

(a) l = 2 and the nucleus G can be laid out in a square

of side o(M
3
2 ), or

(b) l = 3 and the nucleus G can be laid out in a square
of side o(M2), or

(c) l � 4;

assuming that M, the size of the nucleus G, is not a constant.

Proof: The inter-cluster links between top-level clusters can
be laid out in N2=16+o(N2) area using the layout of an M-
node complete graph [25, 27] with multiple edges. When
one of the conditions holds, the area for all nuclei does not
affect the leading constant of the layout area and the required
area is dominated by the top-level inter-cluster links. 2

An r-deep recursive hierarchical swapped network (ab-
breviated RHSN) [23, 25] is obtained by recursively replac-
ing the nucleus of an HSN with an (r�1)-deep RHSN. More
precisely, RHSN(lr; lr�1; :::; l1;G) = HSN(lr; RHSN(lr�1;
lr�2; : : : ; l1;G)). Therefore, RHSN can be laid out by recur-
sively laying out HSNs.

Theorem 4.2 An N-node RHSN(lr; lr�1; :::; l1;G) can be
laid out using N2=16 + o(N2) area, assuming that the
depth r is at least 2 and the number of nodes in an
RHSN(lr�1; lr�2; :::; l1;G) is not a constant. (In other words,
at least one of the parameters r;M; and li for any i � r� 1
is not constant, where M is the size of the nucleus G.)

By shrinking all the nuclei of an HSN into a node, we
obtain a radix-M generalized hypercube [4, 11]. This com-
bined with Theorem 4.1 leads to the following theorem for
the layout of high-radix hypercubes.

Theorem 4.3 A radix-M generalized hypercube can be laid
out using M2N2=16+o(M2N2) area, assuming that M is not
a constant.

The above layout can be easily extended to general
mixed-radix generalized hypercubes [4]. As will be shown
in Section 5, the proposed layouts for generalized hyper-
cubes and HSNs are optimal within a factor of 1+o(1).



4.2. Optimal layouts for butterfly networks and in-
direct swapped networks (ISNs)

In this subsection we present efficient layouts for butter-
fly networks and indirect swapped networks (ISNs) [22]).
A butterfly network [13] is obtained by unfolding the struc-
ture of a hypercube along routing paths, while an indirect
swapped network (ISN) (also called an unfolded swapped
network (USN) [22]) is a multistage network obtained by
unfolding the structure of a swapped network [23, 25]. We
first present optimal layouts for ISNs and then use them to
derive optimal layouts for butterfly networks.

Theorem 4.4 An N-node ISN can be laid out in

N2

4 log2
2 N

+o

�
N2

log2 N

�

area, assuming that the number Ml of top-level clusters in
the corresponding swapped network (which is unfolded to
generate the ISN) is not a constant.

Proof: If we place every Ml rows of the ISN into the same
top-level block [25, 28], then each pair of the blocks are
connected by 2 links. Therefore, we can lay out the inter-
cluster links using the layout of an ( N

Ml log2 N + o( N
Ml logN ))-

node complete graph with multiple edges, which requires

N2

4 log2
2 N

+o

�
N2

log2 N

�

area [25, 27]. 2

The layout area for the ISN improves the corresponding
result given in [22] by a factor of 4+o(1).

The following theorem gives a layout for the butterfly
network that is optimal within a factor of 1+o(1) from the
lower bound given in [2].

Theorem 4.5 An N-node butterfly network can be laid out
in

N2

log2
2 N

+o

�
N2

log2 N

�

area.

Proof: If we unfold an HSN(2; log2 N
2 -cube), we obtain a

(log2 N + 2)-stage ISN that uses log2 N
2 -dimensional butter-

fly networks as the basic modules. If we double up the links
connecting the middle two stages of the ISN, remove nodes
in the ( log2 N

2 + 2)-th stage, and reconnect each of the repli-

cated links to one of the two links between the ( log2 N
2 +2)-th

and the ( log2 N
2 +3)-th stage through a removed node, we can

obtain an automorphism of a (log2 N)-dimensional butterfly
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Figure 2. Deriving butterfly networks from in-
direct swapped networks. (a) Transforming a
4� 4 ISN into a 4� 4 butterfly network. (b) A
resultant 16�16 butterfly network.

(see Fig. 2). Therefore, the area of the butterfly is approxi-
mately 4 times that of an ISN; that is

N2

log2
2 N

+o

�
N2

log2 N

�
:

2

In [2] the same upper bound for the area of a butterfly net-
work has been presented. The proof given in [2] is, however,
considerably more complicated than our construction. It is
also interesting that butterfly networks can be laid out based
on the layout of a complete graph.

Generalized hypercubes, HSN(l;Qn) with l > 2, and
ISNs unfolded from such HSNs can be laid out based on the
collinear layouts of complete graphs rather than the 2-D lay-
outs of complete graphs. Similar to the multilayer layouts of
hypercubes, the resultant layouts for these networks can be
easily partitioned and wired using L > 2 layers. The resul-
tant maximum wire lengths in these layouts can be reduced



by a factor of approximately 2 compared to the layouts pre-
sented in this paper and the areas are also slightly reduced.
Similar to Theorem 4.5 (see Fig. 2), multilayer layouts for
butterfly networks can be obtained by modifying the multi-
layer layouts for ISNs. More details will be reported in the
near future.

5. Tight bounds on the VLSI areas of several
networks

In this section, we derive tight bounds on the areas of sev-
eral networks under the grid model.

The total exchange (TE) task [3, 9] (also called all-to-all
personalized communication) is a basic communication task
that arises often in applications, where each node has to send
a different (personalized) packet to every other node of the
network. In [25], we have shown the following lemma con-
cerning the relationship between the VLSI area of a network
and the throughput for performing TE tasks in it.

Lemma 5.1 Assume that f (N) total exchange (TE) tasks
can be executed in f (N)TTE communication steps in an
N-node interconnection network for some integer function
f (N), under the all-port communication model. Then the
layout area of the network is at least equal to

bN=2c2�dN=2e2

T2
TE

� N4

16T2
TE

:

When performing the TE tasks we assume that links are bidi-
rectional and nodes can have infinitely large routing tables
and buffer space and perform infinitely many computation
steps if required. (Links are still assumed to have unit width
in the layout.)

In what follows we show that several of the layouts pre-
sented in Section 4 have areas that are optimal within a fac-
tor of 1+o(1).

Theorem 5.2 The area of the minimal layout of a radix-M
generalized hypercube is equal to M2N2=16�o(M2N2), as-
suming that M is not a constant, where N is the number of
nodes in the network.

Proof: The upper bound is given in Theorem 4.3. A lower
bound on its VLSI area is given by

(M�1)2n2N2

16n2 =
M2N2

16
�o(M2N2)

from Lemma 5.1 and the fact that n TE tasks can be per-
formed in nN=M steps in an n-dimensional radix-M hyper-
cube. 2

The throughput for performing TE tasks in HSNs is given
in the following lemma [25].

Lemma 5.3 The throughput for executing TE tasks in an N-
node HSN(l;G) can be arbitrarily close to 1=N, provided
that the nucleus G can execute l TE tasks in M time steps un-
der the all-port communication model, where M is the num-
ber of nodes in G.

By combining Lemma 5.3 with Theorems 4.1 and 5.1,
we can prove that the layout for HSNs is also close to be-
ing strictly optimal.

Theorem 5.4 The area of the minimal layout of an N-node
HSN(l;G) is equal to N2=16+ o(N2) if the nucleus G can
execute l TE tasks in M time steps under the all-port com-
munication model and

(a) l = 2 and the nucleus G can be laid out in a square

of side o(M
3
2 ), or

(b) l = 3 and the nucleus G can be laid out in a square
of side o(M2), or

(c) l � 4;

assuming that M, the size of a nucleus G, is not a constant.

In Section 4 we derived optimal layouts for butterfly net-
works based on the layouts of ISNs. In what follows, we
show that the lower bound on the VLSI area of a butterfly
network given in [2] can be used to derive a lower bound on
the area of an ISN.

Theorem 5.5 The area of the minimal layout of an N-node

ISN is equal to N2

4 log2
2 N
� o( N2

log2 N
), assuming the nucleus of

the ISN is a butterfly network.

Proof: From Theorem 4.5, we can see that if it were possible

to lay out an ISN in (1�ε)N2

4 log2
2 N

area, then it would also be possi-

ble to lay out a butterfly network in (1�ε)N2

log2
2 N

+o( N2

log2 N
) area,

where ε is a positive constant. This contradicts the lower
bound given in [2]. Therefore, the area of an ISN is at least

N2

4 log2
2 N

� o( N2

log2 N
). The upper bound is given in Theorem

4.4. 2

Theorem 5.5 can be generalized to ISNs that are based on
other nuclei that contain a butterfly network of the same size
as a subgraph.

By using the techniques introduced, we can also obtain
tight bounds on the bisection widths of the networks inves-
tigated in this paper and efficient layouts for many other net-
works, such as macro-star networks [26] periodically regu-
lar chordal rings [14, 15], and cyclic networks [24]. Some
examples can be found in [25, 28].



6. Conclusion

We derived layouts for butterfly networks, generalized
hypercubes, HSNs, and ISNs that are optimal within a factor
of 1+o(1) under the grid model. We presented efficient lay-
outs for hypercubes, CCCs, folded hypercubes, reduced hy-
percubes, RHSNs, and enhanced-cubes, which are the best
results reported thus far under the grid model. In particular,
the number of tracks of the collinear layout of hypercubes
is optimal within a factor of 1:3̄, and the areas of proposed
2-D layouts for hypercubes and CCC are optimal within a
factor of 1:7̄ under the grid model. We also derived effi-
cient multilayer layouts for hypercubes, which are the best
results reported thus far for the given numbers of layers. The
techniques used in this paper can be used to obtain efficient
layouts for a wide variety of other interconnection networks
[25, 28].
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