
(v,ev2.6) *», 

"^ (u . eUdeg v, 1) 

Fig . 2.6. 

Moreover, K contains all edges in E'v. (for i = 1 . . . . , k) and the edges 

{a,. (i>i, (evi)i, 1)} for t = l , . . . , f c j 
{«¿+1, (euj)degu, ,6)} for i = 1 . f c - l ; and 
{oi,(wfc, (ei>0de g« f c,6)}. 

The reader may check that K is indeed a Hamiltonian cycle for G'. 

3 

Shortest Paths 

So many paths that wind and wind. 
E L L A W H E E L E R W I L C O X 

One of the most common applications of graphs in everyday life is representing 
networks for traffic or for data communication. The schematic map of the 
German motorway system in the official guide Autobahn Service, the railroad 
or bus lines in some public transportation system, and the network of routes 
an airline offers are routinely represented by graphs. Therefore it is obviously 
of great practical interest to study paths in such graphs. In particular, we 
often look for paths which are good or even best in some respect: sometimes 
the shortest or the fastest route is required, sometimes we want the cheapest 
path or the one which is safest - for example, we might want the route where 
we are least likely to encounter a speed-control installation. Thus we will study 
shortest paths in graphs and digraphs in this chapter; as we shall see, this is 
a topic whose interest extends beyond traffic networks. 

3.1 Shor tes t p a t h s 

Let G = (V. E ) be a graph or a digraph on which a mapping w : E —> R is 
defined. We call the pair (G, w) a network: the number w(e) is called the length 
of the edge e. Of course, this terminology is not intended to exclude other 
interpretations such as cost, duration, capacity, weight, or probability: we 
will encounter several examples later. For instance, in the context of studying 
spanning trees, we usually interpret w(e) as the weight of the edge e. But 
in the present chapter the reader should keep the intuitive interpretation of 
distances in a network of streets in mind. This naturally leads to the following 
definition. For each walk W = ( e i , . . . , e n ) , the length of W is w(W) : — 
w(ei) +.. . + w(en); of course, W has to be directed for digraphs. The distance 
d(a. b) between two vertices a and b in G is the minimum over all lengths 
of walks starting at a and ending at b. There are two difficulties with this 
definition: first, b might not be accessible from a, and second, a minimum 
might fail to exist. The first problem is solved by defining d(a, b) — oo if b is 
not accessible from a. The second problem arises from the possible existence 
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of cycles of negative length. For example, in the network shown in Figure 3.1, 
we can find a walk of arbitrary negative length from a to b by using the cycle 
(x, y, z, x) as often as needed. This problem can be avoided by restricting the 
definition to trails. Most of the networks we will deal with will not contain 
any cycles of negative length; then the distance between two vertices is well-
defined even if we allow walks in the definition. 

z 

a 

Fig . 3.1. A network 

The reader might wonder why negative lengths are allowed at all and 
whether they occur in practice. The answer is yes, they do occur, as the 
following example taken from [Law76] shows; this also provides a first example 
for another interpretation of the length of an edge. 

Example 3.1.1. A trading ship travels from port a to port b, where the 
route (and possible intermediary ports) may be chosen freely. The routes are 
represented by trails in a digraph G, and the length w(e) of an edge e = xy 
signifies the profit gained by going from x to y. For some edges, the ship 
might have to travel empty so that w(e) is negative for these edges: the profit 
is actually a loss. Replacing w by — w in this network, the shortest path 
represents the route which yields the largest possible profit. 

Clearly, the practical importance of the preceding example is negligible. 
We wil l encounter genuinely important applications later when treating flows 
and circulations, where the existence of cycles of negative length - and finding 
such cycles - will be an essential tool for determining an optimal circulation. 

Thus, we allow negative values for .w in general and define distances as 
explained above. A shortest pathjrom a to b then is a trai l (directed in the 
case of digraphs) of length d(a, b) from a to b. I f G does not contain any 
cycles of negative length, we can also talk of shortest walks. Note that always 
d(a, a) = 0, since an empty sum is considered to have value 0, as usual. I f we 
talk of shortest paths and distances in a graph (or a digraph) without giving 
any explicit length function, we always use the length function which assigns 
length w(e) = 1 to each edge e. 

We now give an example for an interpretation of shortest paths which 
allows us to formulate a problem (which at first glance might seem completely 
out of place here) as a problem of finding shortest paths in a suitable graph. 

Example 3.1.2. In many applications, the length of an edge signifies the 
probability of its failing - for instance, in networks of telephone lines, or broad-
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casting systems, in computer networks, or in transportation routes. In all these 
cases, one is looking for the route having the highest probability for not fail
ing. Lei p(i-j) be the probability that edge does not fail. Under the -
not always realistic - assumption that failings of edges occur independently of 
each other, p(e\).. -p(e„) gives the probability that the walk ( e i , . . . , e „ ) can 
be used without interruption. We want to maximize this probability over all 
possible walks with start vertex a and end vertex b. Note first that the maxi
mum of the product of the p(e) is reached if and only if the logarithm of the 
product, namely logp(ei) + . . . + logp(e n ) , is maximal. Moreover, logp(e) < 0 
for all e, since p(e) < 1. We now put w(e) = — logp(e); then w(e) > 0 for all 
e, and we have to find a walk from a to b for which wjei) + . . . + tw(e„) 
becomes minimal. Thus our problem is reduced to a shortest path problem. 
In particular, this technique solves the problem mentioned in our introduc
tory remarks - finding a route where it is least likely that our speed wil l be 
controlled by the police - provided that we know for all edges the probability 
of a speed check. 

In principle, a technique for finding shortest paths can also be used to 
find longest paths: replacing w by —w, a longest path with respect to w is 
just a shortest path with respect to — w. However, good algorithms for finding 
shortest paths are known only for the case where G does not contain any 
cycles of negative length. In the general case we basically have to look at 
all possible paths. Note that replacing w by — w in general creates cycles of 
negative length. 

Exercise 3.1.3 (knapsack problem). Consider n given objects, each of 
which has an associated weight a,j and also a value Cj, where both the <Zj 
and the Cj are positive integers. We ask for a subset of these objects such that 
the sum of their weights does not exceed a certain bound b and such that the 
sum of their values is maximal. Packing a knapsack provides a good example, 
which explains the terminology used. Reduce this problem to finding a longest 
path in a suitable network. Hint: Use an acyclic network with a start vertex 
s, an end vertex t, and 6 + 1 vertices for each object. 

3.2 F i n i t e m e t r i c spaces 

Before looking at algorithms for finding shortest paths, we want to show that 
there is a connection between the notions of distance and metric space. We 
recall that a metric space is a pair (X, d) consisting of a set X and a mapping 
d: X2 —> RQ satisfying the following three conditions for all x. y.z e X: 

(MSI) d(x. y) > 0, and d(x. y) = 0 if and only if x = y: 
(MS2) d(x.y) = d(y.x): 
(MS3) d(x.z) < d(x.y) +d(y, z). 
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The value d(x,y) is called the distance between x and y; the inequality in 
(MS3) is referred to as the triangle inequality. The matrix D = (d(x, y))x,y&x 
is called the distance matrix of (X,d). 

Now consider a network (G.w), where G is a graph and w is a positive 
valued mapping w : E —+ R + . Note that a walk with start vertex a and end 
vertex 6 which has length d(a, b) - where the distance between a and b is 
defined as in Section 3.1 - is necessarily a path. The following result states 
that our use of the term distance in this context is justified: the simple proof 
is left to the reader. 

L e m m a 3.2.1. Let G = (V,E) be a connected graph with a positive length 
function w. Then (V,d) is a finite metric space, where the distance function 
d is defined as in Section 3.1. • 

Lemma 3.2.1 suggests the question whether any finite metric space can be 
realized by a network. More precisely, let D be the distance matrix of a finite 
metric space (V, d). Does a graph G = (V,E) with length function w exist 
such that its distance matrix with respect to w agrees with D? Hakimi and 
Yau [HaVa64] answered this question as follows. 

Proposition 3.2.2. Any finite metric space can be realized by a network with 
a positive length function. 

Proof. Let (V, d) be a finite metric space. Choose G to be the complete graph 
with vertex set V, and let the length function w be the given distance function 
d. By d! we denote the distance in the network (G, w) as defined in Section 
3.1; we have to show d = w — d!. Thus let W = ( e i , . . . , e„) be a trail with 
start vertex a and end vertex b. For n > 2, an iterative application of the 
triangle inequality yields: 

w(W) = w(ei) + . . . + iv(en) = d(ei ) + . . . + d{en) > d(a.b). 

As the one edge path a - b has length d(a. b), we are finished. • 

Exercise 3.2.3. Find a condition under which a finite metric space can be 
realized by a graph, that is, by a network all of whose edges have length 1; 
see [KaCh65]. 

We have only considered the case where a metric space (V, d) is realized 
by a network on the vertex set V. More generally, we could allow a network 
on a graph G = (V',E) with V C V, where the distance dc(a, 6) in G for 
two vertices a, b of V is the same as their distance d(a, b) in the metric space. 
Such a realization is called optimal i f the sum of all lengths of edges is minimal 
among all possible realizations. It is not obvious that such optimal realizations 
exist, but they do; see [Dre84] and [ImSZ84l 

3.3 Breadth first search and bipartite graphs 63 

Example 3.2.4. The following simple example shows that the realization 
given in the proof of Proposition 3.2.2 is not necessarily optimal. Let d(a, b) = 
d(b, c) = 4 and d(a, c) = 6. The realization on K$ has total length 14, whereas 
there is a realization on four vertices with total length just seven: 

4 

F i g . 3.2. Two realizations of a distance matrix 

Realizations of metric spaces by networks have been intensively studied. 
In particular, the question whether a given metric space can be realized on a 
tree has sparked considerable interest; such a realization is necessarily optimal 
[HaVa64]. Bunemann [Bun74] proved that a realization on a tree is possible if 
and only i f the following condition holds for any four vertices x. y, z, t of the 
given metric space: 

d(x, y) + d(z, t) < max (d(x, z) + d(y. t), d(x, t) + d(y, z)). 

A different characterization (using ultra-metrics) is due to [Ban90]. We also 
refer the reader to [Sim88] and [Alt88]. The problem of finding an optimal 
realization is difficult in general: i t is NP-hard [Win88]. 

3.3 B r e a d t h f i r s t search a n d b i p a r t i t e graphs 

We now turn to examining algorithms for finding shortest paths. Al l tech
niques presented here also apply to multigraphs, but this generalization is of 
little interest: when looking for shortest paths, out of a set of parallel edges 
we only use the one having smallest length. In this section, we consider a 
particularly simple special case, namely distances in graphs (where each edge 
has length 1). The following algorithm was suggested by Moore [Moo59] and 
is known as breadth first search., or. for short. BFS. I t is one of the most 
fundamental methods in algorithmic graph theory. 

Algorithm 3.3.1 ( B F S ) . Let G be a graph or digraph given by adjacency 
lists Av. Moreover, let 5 be an arbitrary vertex of G and Q a queue.1 The 
vertices of G are labelled with integers d(v) as follows: 

1 Recall that a queue is a data structure for which elements are always appended 
at the end, but removed at the beginning (first in - first out). For a discussion of 
the implementation of queues we refer to [AhHTJ83] or [CoLR90]. 
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Procedure BFS(G,s;d) 

(1) Q < - 0 ; rf(«)«-0; 
(2) append s to Q; 
(3) while Q 0 do 
(4) remove the first vertex v from Q; 
(5) for it' € Av do 
(6) if d(w) is undefined 
(7) then d{w) «- div) + 1; 
(8) append iu to Q 
(9) fi 

(10) od 
(11) od 

Theorem 3.3.2. Algorithm 3.3.1 has complexity 0(\E\). At the end of the 
algorithm, every vertex t of G satisfies 

M t\ — / if d(t) is defined, 
[ oc otherwise. 

Proof. Obviously, each edge is examined at most twice by BFS (in the directed 
case, only once), which yields the assertion about the complexity. Moreover, 
d(s, t) = oo if and only if t is not accessible from s, and thus d(i) stays 
undefined throughout the algorithm. Now let t be a vertex such that d(s, t) ^. 
oo. Then d(s,t) < d(t), since t was reached by a path of length d(t) from s. 
We show that equality holds by using induction on d(s.t). This is trivial for 
d(s, t) = 0, that is, s = t. Now assume d(s, t) = n + 1 and let (s. v\,..., vn, t) 
be a shortest path from s to t. Then (s, V\,... ,Vn) is a shortest path from 
s to vn and, by our induction hypothesis, d(s,vn) = n = d(vn). Therefore 
d(vn) < d(t), and thus BFS deals with vn before t during the while-loop. On 
the other hand, G contains the edge vnt so that BFS certainly reaches t when 
examining the adjacency list of vn (if not earlier). This shows d(t) < n + 1 
and hence d(t) = n + 1. • 

Corollary 3.3.3. Let s be a vertex of a graph G. Then G is connected if and 
only if d(t) is defined for each vertex t at the end of BFS (G,s:d). • 

Note that the statement analogpus to Corollary 3.3.3 for directed graphs is 
not true. I f we want to check whether a given digraph is connected, we should 
apply BFS to the corresponding graph \G\. Applying BFS(G, s:d) for each 
vertex s of a digraph allows us to decide whether G is strongly connected; 
clearly, this holds if and only if BFS(G, s: d) always reaches all vertices t and 
assigns values to d(t). However, this method is not very efficient, as it has 
complexity 0(|V||.E|). In Chapter 8, we will see a much better technique 
which has complexity 0(j.E|). 

For an example, let us consider how BFS runs on the digraph G drawn 
in Figure 3.3. To make the algorithm deterministic, we select the vertices in 
alphabetical order in step (5) of the BFS. In Figures 3.4 and 3.5, we illustrate 
the output of BFS both for G and the associated graph \G\. To make things 
clearer, we have drawn the vertices in levels according to their distance to s; 
also, we have omitted all edges leading to vertices already labelled. Thus all 
we see of \G\ is a spanning tree , that is, a spanning subgraph of G which 
is a tree. This kind of tree wil l be studied more closely in Chapter 4. Note 
that distances in G and in |G| do not always coincide, as was to be expected. 
However, we always have dc{s,t) > d\Q\(s,t). 

F i g . 3.3. A digraph G 

F i g . 3.4. BFS-tree for G 

Exercise 3.3.4. Design a BFS-based algorithm COMP(G) which determines 
the connected components of a graph G. 



Fig . 3.5. BFS-tree for \G\ 

Next we consider a particularly important class of graphs, namely the bi
partite graphs. As we shall see soon. BFS gives an easy way to decide whether 
or not a graph belongs to this class. Here a graph G = (V. E ) is said to be 
bipartite if there is a partition V = S U T of its vertex set such that the sets 
of edges E\S and E\T are empty, that is, each edge of G is incident with one 
vertex in 5 and one vertex in T. The following theorem gives a very useful 
characterization of these graphs. 

Theorem 3.3.5. A graph G is bipartite if and only if it does not contain any 
cycles of odd length. 

Proof. First suppose that G is bipartite and let V = S U T be the corre
sponding partition of its vertex set. Consider an arbitrary closed trail in G, 
say 

C : vi v2 ... vn t ' i . 

We may assume v\ € S . Then 

r>2 e T , v3GS, v4eT, ... . vneT. V l e s, 

as there are no edges within S or T. Hence n must be even. 
Conversely, suppose that G does not contain any cycles of odd length. 

We may assume that G is connected. Choose some vertex x0. Let S be the 
set of all vertices a' having even distance d(x.xo) from Xo, and let T be the 
complement of S. Now suppose that there is an edge x.y in G with x.y € S. 
Let Wx and Wy be shortest paths from x0 to x and y. respectively. By our 
definition of S . both these paths have even length. Let us denote the last-
common vertex of Wx and Wy by z (traversing both paths starting at x 0 ) , 
and call their final parts (leading from z to x and y. respectively) W'x and 
Wy. Then it is easily seen that 

ó.ó t ireaatn tirst searcn and Dipartite grapns iw 

is a cycle of odd length in G, a contradiction. Similarly, G cannot contain an 
edge xy with x.y 6 T. Hence S U T is a partition of V such that there are no 
edges within S or T. and G is bipartite. • 

The proof of Theorem 3.3.5 shows how we may use the distances d(s,t) 
in G (from a given start vertex s) for finding an appropriate partition of the 
vertex set of a given bipartite graph G. These distances can be determined 
using BFS; of course, we should modify Algorithm 3.3.1 in such a way that 
it detects cycles of odd length, in case G is not bipartite. This is actually 
rather simple: when BFS examines an edge e for the first time, a cycle of odd 
length containing e exists if and only if e has both its vertices in the same 
level. This gives us the desired criterion for checking whether G is bipartite 
or not; moreover, if G is bipartite, the part of G determined by s consists of 
those vertices which have even distance from s. These observations lead to 
the following algorithm and the subsequent theorem. 

Algorithm 3.3.6. Let G be a connected graph and s a vertex of G. 
Procedure BIPART(G, s; 5,'T,bip) 

(1) Q <- 0, d(s) — 0, bip « - true, 5 ^ - 0 ; 
(2) append s to Q: 
(3) while Q ^ 0 and bip = true do 
(4) remove the first vertex v of Q: 
(5) for w € Av do 
(6) if d(w) is undefined 
(7) then d(w) <— d(v) + 1; append w to Q 
(8) else if d(v) = d(w) then bip <— false fi 
(9) fi 

(10) od 
(11) od; 
(12) if bip = true then for v € V do 
(13) if d(v) = 0 (mod 2) then S ^ S U {v} fi 
(14) od: 
(15) T^V\S 
(16) fi 

Theorem 3.3.7. Algorithm 3.3.6 checks with complexity 0(\E\) whether a 
given connected graph G is bipartite; if this is the case, it also determines the 
corresponding partition of the vertex set. • 

Exercise 3.3.8. Describe a BFS-based algorithm which finds with complexity 
0(|V||.E|) a shortest cycle in - and thus the girth of - a given graph G. 
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The problem of finding a shortest cycle was extensively studied by Itai and 
Rodeh [ItRo78] who also treated the analogous problem for directed graphs. 
The best known algorithm has a complexity of 0(|V| 2); see [YuZw97]. BFS 
can also be used to find a shortest cycle of even or odd length, respectively: 
see [Mon83]. * 

3.4 B e l l m a n ' s equat ions a n d acycl ic d i g r a p h s 

We now turn to the problem of determining shortest paths in a general net
work; actually, all known algorithms for this problem even find a shortest path 
from the start vertex s to each vertex t which is accessible from s. Choosing 
t in a special way does not decrease the complexity of the algorithms. As 
agreed in Section 3.1, we always assume that G does not contain any cycles of 
negative length. Moreover, we assume from now on that G is a directed graph 
so that all paths used are also directed. 2 

Without loss of generality, we may assume that G has vertex set V = 
{ 1 . . . . , r i } . Let us write u>ij := w(ij) if G contains the edge ij, and wtj = oo 
otherwise. Furthermore, let u,: denote the distance d(s,i), where s is the start 
vertex; in most cases, we wil l simply take 8 = 1. Now any shortest path from s 
to i has to contain a final edge ki, and deleting this edge yields a shortest path 
from s to k. Hence the distances Uj have to satisfy the following system of 
equations due to Bellman [Bel58], where we assume for the sake of simplicity 
that s = 1. 

Proposition 3.4.1 (Bellman's equations). Let s = 1. Then 

(B) u-i = 0 and Ui — min {u* + Wki • i ^ k} for i — 2 , . . . . n. • 

We will now show that the system of equations (B) has a unique solution 
- namely the distances m in G - provided that G contains only cycles of 
positive length and that each vertex is accessible from 1. To this purpose, let 
Ui (i = 1 .7?) be any solution of (B) and choose some vertex j ^ 1. We 
want to construct a path of length Uj from 1 to j . To do so, we first choose 
some edge kj with u3 = Uk + w^j, then an edge ik with Uk = Ui + Wik, etc. Let 
us show that this construction cannot yield a cycle. Suppose, to the contrary, 
we were to get a cycle, say 

C : vi v2 ... vm vx. 

Then we would have the following equations which imply w(C) = 0, a con
tradiction to our assumption that G contains cycles of positive length only: 

2 For nonnegative length functions, the undirected case can be treated by consid
ering the complete orientation G instead of G. I f we want to allow edges of negative 
length, we need a construction which is considerably more involved, see Section 14.6. 
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Uv^ — ^"Um ~f W|)mV] 
= U v m _ i + UIVm_lVnl + U)VmVl 

= uVl + wVlVi + ... + wVmVl. 

Thus our construction can only stop at the special vertex 1, yielding a path 
from 1 to j . Also, for each vertex i occurring on this path, the part of the path 
leading to i has length u». Continuing in this way for all other vertices not yet 
occurring in the path(s) constructed so far - where we construct a new path 
backward only until we reach some vertex on one of the paths constructed 
earlier - we obtain a directed spanning tree with root 1. In particular, we 
may apply this technique to the distances in G, since they satisfy Bellman's 
equations. This proves the following result. 

Theorem 3.4.2. J /1 is a root of G and if all cycles of G have positive length 
with respect to w, then G contains a spanning arborescence with root 1 for 
which the path from 1 to any other vertex in G always is a shortest path. • 

A spanning arborescence with root s is usually called a shortest path tree 
for the network (G.w) if, for each vertex v, the path from s to v in T has 
length d(s,v): we will often use the shorter term SP-tree. Thus Theorem 3.4.2 
shows that an SP-tree exists provided that all cycles of G have positive length 
with respect to w. 

Now let u\.... .un be the distances in G , and let u i , . . . , u ' n be a further 
solution of (B). Suppose ud ^ u'j for some j . The above construction shows 
that u'j is the length of some - not necessarily shortest - path from 1 to j . As 
Uj = d(l,j), this means u ' > Uj. Let kj be the last edge in a path of length u'j 
from 1 to j . By induction, ŵ e may assume u* = u'k. But then u'j > u'k + Wkj 
which contradicts (B). Hence Uj = u'j for all j = 1 , . . . , n, proving the desired 
uniqueness result. 

Theorem 3.4.3. If 1 is a root of G and if all cycles of G have positive length 
with respect to w, then Bellmans equations have a unique solution, namely 
the distances Uj =d(l,j), • 

In view of the preceding results, we have to solve the system of equations 
(B). We begin with the simplest possible case, where G is an acyclic digraph. 
As we saw in Section 2.6. we can find a topological sorting of G in 0(|JB|) 
steps. After having executed TOPSORT. let us replace each vertex v by its 
number topnr(z'). Then every edge ij in G satisfies i < j . and we may simplify 
Bellman's equations as follows: 

u\ = 0 and Ui = min {ufc + win • k = 1 . . . . . i — 1} for i as 2 , . . . , n . 

Obviously, this system of equations can be solved recursively in 0(|£|) steps 
if we use backward adjacency lists, where each list contains the edges with a 
common head. This proves the following result. 
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Theorem 3.4.4. Let N be a network on an acyclic digraph G with root s. 
Then one can construct a shortest path tree with root s in 0(\E\) steps. • 

Mehlhorn and Schmidt [MeSc86] found a larger class of graphs (contain
ing the acyclic digraphs) for which with complexity 0{\E\) i t is possible^ 
determine the distances with respect to a given vertex. 

Exercise 3.4.5. Show that, under the same conditions as in Theorem 3.4.4. 
we can also with complexity 0(|i?|) determine a system of longest paths from 
s to all other vertices. Does this yield an efficient algorithm for the knapsack 
problem of Exercise 3.1.3? What happens if we drop the condition that the 
graph should be acyclic? 

Let us return to SP-trees again. We want to prove the following important 
strengthening of Theorem 3.4.2: 

Theorem 3.4.6. Let G be a digraph with root s, and let w: E —> R be a length 
function on G. If the network (G,w) does not contain any directed cycles of 
negative length, then there exists an SP-tree with root s for (G.w). 

Proof. Let » / s b e an arbitrary vertex of G. By hypothesis, v is accessible 
from s; let W be a, trai l of shortest length d(s, v) from s to v. As (G, w) does 
not contain any directed cycles of negative length, W is even a shortest walk 
from s to v. Now let u be the last vertex on W before v, so that the final edge 
of W is e — uv. Then W \ e has to be a shortest trail from s to u: if W were 
a trail from s to u shorter than W \ e, then W — e would be a shorter walk 
from s to v than W. Hence 

d(s. v) = d(s, u) + w(uv). (3.1) 

Thus we may, for each vertex v ^ s, choose an edge e = ev = uv satisfying 
condition (3.1). This gives |V| - 1 edges which together form a spanning 
arborescence T of G with root s.3 I t is now easy to see that the unique path 
Pt from s to v in T always has length d(s,v): this follows by induction on 
the number of edges contained in Pt, using the fact that all edges of T satisfy 
condition (3.1). Thus T is the desired SP-tree for (G.w). • 

Exercise 3.4.7. Show that the condition that no cycles of negative length 
exist is necessary for proving Theorem 3.4.6: if (G. w) contains a directed 
cycle of negative length, then thereis no SP-tree for (G.w). 

Exercise 3.4.8. Let T be a spanning arborescence with root s in a network 
(G, w) which does not contain any directed cycles of negative length. Show 
that T is an SP-tree if and only if the following condition holds for each edge 
e = uv of G: 

dT(s.v) < dT(s.u) + w(uv). (3.2) 
where dT(s,u) denotes the distance from s to u in the network (T. w\T). 

3 T h e reader should check this for himself as an exercise; a formal proof can be 
found in Lemma 4.8.1. 
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3.5 A n a p p l i c a t i o n : S c h e d u l i n g p r o j e c t s 

We saw in Exercise 3.4.5 that it is easy to find longest paths in an acyclic 
digraph. We wil l use this fact to solve a rather simple instance of the problem 
of making up a schedule for a project. I f we want to carry out a complex project 
- such as, for"example, building a dam, a shopping center or an airplane - the 
various tasks ought to be well coordinated to avoid loss of time and money. 
This is the goal of network planning, which is, according to [Mue73] "the 
tool from operations research used most." [Ta92] states that these techniques 
'enjoy tremendous popularity among practitioners in the field'. We restrict 
ourselves to the simple case where we have restrictions on the chronological 
sequence of the tasks only: there are'some tasks which we cannot begin before 
certain others are finished. We are interested in the shortest possible time the 
project takes, and would like to know the points of time when each of the tasks 
should be started. Two very similar methods to solve this problem, namely the 
critical path method (CPM) and the project evaluation and review technique 
(PERT) were developed between 1956 and 1958 by two different groups, cf. 
[Ta92] and [Mue73]. CPM was introduced by E. I . du Pont de Nemours k 
Company to help schedule construction projects, and PERT was developed 
by Remington Rand for the U.S. Navy to help schedule the research and 
development activities for the Polaris missile program. CPM-PERT is based 
on determining longest paths in an acyclic digraph. We shall use a formulation 
where the activities in the project are represented by vertices: alternatively, 
one could also represent them by arcs, cf. [Ta92]. 

First, we assign a vertex i € { 1 , . . . , N} of a digraph G to each of the N 
tasks of our project. We let ij be an edge of G if and only if task i has to be 
finished before beginning task j . The edge ij then has length Wij = d{ equal 
"to the time task i takes. Note that G has to be acyclic, because otherwise 
the tasks in a cycle in G could never be started. As we have seen in Lemma 
2.6.2, G contains at least one vertex v with dm(v) = 0 and, analogously, at 
least one vertex w with dout(w) = 0. We introduce a new vertex s (the start 
of the project) and add edges sv for all vertices v with din(v) = 0; similarly, 
we introduce a new vertex z (the end of the project) and add edges wz for 
all vertices w with dout(w) = 0. A l l the new edges sv have length 0, whereas 
the edges wz are given length dw. In this way we get a larger digraph H with 
root s; by Theorem 2.6.3. we may assume H to be topologically sorted. 

Now we denote the earliest possible point of time at which we could start 
task i by i j . As all the tasks immediately preceding i have to be finished 
before, we get the following system of equations: 

(CPM) t.s = 0 and U = max {tk + wki: ki an edge in H} . 

This system of equations is analogous to Bellman's equations and describes 
the longest paths in H. compare Exercise 3.4.5. As in Theorem 3.4.3. (CPM) 
has a unique solution which again is easy to calculate recursively, since H is 
topologically sorted and thus only contains edges ij with i < j . The minimal 
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amount of time the project takes is the length T = tz of a longest path from 
s to z. I f the project is actually to be finished at time T, the latest point of 
time T 2 where we can still start task i is given recursively by 

Tz — T and Ti = min {Tj — u>,j : ij an edge in H} . * 

Thus Tz — Ti is the length of a longest path from i to z. Of course, we should 
get Ts = 0, which is useful for checking our calculations. The difference rrii = 
Ti — ti between the earliest point of time and the latest point of time for 
beginning task i is called float or slack. A l l tasks i having float rrii = 0 are 
called critical, because they have to be started exactly at the point of time 
Ti = ti, as otherwise the whole project would be delayed. Note that each 
longest path from s to z contains critical tasks only; for that reason each such 
path is called a critical path for H. I n general, there wil l be more than one 
critical path. 

In practice, H wil l not contain all edges ij for which i has to be finished 
before j , but only those edges for which i is an immediate predecessor of j 
so that there are no intermediate tasks between i and j . As an example, let 
us consider a simplified schedule for building a house. First, we need a list of 
the tasks, the amount of time they take, and which tasks have to be finished 
before which other tasks; this information can be found in Table 3.2. The 
corresponding digraph is shown in Figure 3.6. We have drawn the edges as 
undirected edges to make the figure somewhat simpler: all edges are to be 
considered as directed from left to right. 

The way the digraph is drawn in Figure 3.6, it is not necessary to state a 
topological sorting of the vertices explicitly; see Exercise 3.5.2. Using (CPM), 
we calculate consecutively 

ts = 0, h = 0, t 2 = 0, t3 = 3, U - 5, ¿ 5 = 7, ts = 7, 
t6 = 14, t n = 14. t13 = 17. t7 = 17, t9 = 18, t10 = 18, 
¿ 1 2 = 20. r i 4 = 22, fis = 25, t M = 28, T = r £ = 3 3 . 

Similarly, we compute the Ti and the floats TOJ: 

Tz = 33, mz = 0; 7\6 = 28, m 1 6 = 0; Tl5 = 25, mu = 0; 
r 1 2 = 29, m 1 2 = 9: T14 = 22. m 1 4 = 0 ; Tg = 27, m 9 = 9: 
T 1 0 = 21, m 1 0 = 3: T7 = 2Q. m7 = 3: Tl3 = 17, m13 = 0: 
T6 = 17. m6 = 3: Tn = 14, m u = 0 ; T5 = 7, m 5 = 0; 
Tg = 18, 7U8 = 11: T4 = 5, rri4 = 0: T3 = 3. 7713 = 0: 
J \ = 0 . rnj = 0 : T2 = 1, 777 2 = 1: T s = 0. ms = 0. 

Thus the critical tasks are s, 1,3,4,5,11,13,14,15,16, z, and they form (in 
this order) the critical path, which is unique for this example. 
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Table 3.1. Project of building a house 

Vertex Task Amount of time Preceding tasks 

1 prepare the building site 3 -

2 deliver the building material 2 -

3 dig the foundation-hole 2 1,2 
4 build the foundation 2 3 
5 build the walls 7 4 
6 build the roof supports 3 5 
7 cover the roof 1 6 
8 connect the water pipes to the house 3 4 
9 plasterwork outside 2 7,8 

10 install the windows 1 7,8 
11 put in the ceilings 3 5 
12 lay out the garden 4 9,10 
13 install inside plumbing 5 11 
14 put insulation on the walls 3 10,13 
15 paint the walls 3 14 
16 move 5 15 

F i g . 3.6, Digraph for the project of building a house 

Further information on project scheduling can be found in the books [Ta92] 
and [Mue73], and in the references given there. Of course, there is much more 
to scheduling than the simple method we considered. In practice there are 
often further constraints that have to be satisfied, such as scarce resources 
like limited amounts of machinery or restricted numbers of workers at a given 
point of time. For a good general overview of scheduling, the reader is referred 
to [LaLRS93]. We close this section with a couple of exercises; the first of these 
is taken from [Mue73]. 
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Exercise 3.5.1. A factory wants to replace an old production facility by a 
new one; the necessary tasks are listed in the table below. Draw the corre
sponding network and determine the values U,Ti, and 77ij. 

Table 3.2. Project of building a new production facility 

Vertex Task Amount of time Preceding tasks 

1 ask for offers, compare and order 25 -

2 take apart the old facility 8 -
3 remove the old foundation 5 2 
4 plan the new foundation 9 1 
5 term of delivery for the new facility 21 1 
6 build the new foundation 9 3,4 
7 install the new facility 6 5,6 
8 train the staff 15 1 
9 install electrical connections 2 7 

10 test run 1 8,9 
11 acceptance test and celebration 2 10 

Exercise 3.5.2. Let G be an acyclic digraph with root s. The rank r(v) of 
a vertex v is the maximal length of a directed path from s to v. Use the 
methods introduced in this chapter to find an algorithm which determines 
the rank function. 

Exercise 3.5.3. Let G be an acyclic digraph with root s, given by adjacency 
lists Av. Show that the following algorithm computes the rank function on G, 
and determine its complexity: 
Procedure RANK(G, s; r) 
(1) create a list So, whose only element is s; 
(2) r(s) *- 0; k « - 0; 
(3) for v € V do d(v) <- dm(v) od: 
(4) while Sk ^ 0 do 
(5) create a new list Sfc+ii 
(6) for v € Sk do 
(7) for w € Av do 
(8) If d{w) = 1 
(9) then append w to Sk+i - r(w) <— k+ 1; p(u<) *— v 

(10) fi: 
(11) d[w) « - d(w) - 1 
(12) od 
(13) od; 
(14) k^k+ì 
(15) od 
How can we determine d(w)7 How can a longest path from s to v be found? 
Can RANK be used to find a topological sorting of G? 

3.6 T h e a l g o r i t h m o f D i j k s t r a 

In this section, we consider networks having all lengths nonnegative. In this 
case Bellman's equations can be solved by the algorithm of Dijkstra [Dij59]. 
which is probably the most popular algorithm for finding shortest paths. 

Algorithm 3.6.1. Let (G, w) be a network, where G is a graph or a digraph 
and all lengths w(e) are nonnegative. The adjacency list of a vertex v is 
denoted by Av. We want to calculate the distances with respect to a vertex s. 
Procedure DIJKSTRA(G, w. s: d) 

(1) d(s) <— 0, T <— V; 
(2) for v <E V \ {s} do d(v) *- oo od; 
(3) while T + 0 do 
(4) find some u £T such that d(u) is minimal; 
(5) r - r \ M ; 
(6) for v € T Pi Au do d(v) <— mm(d(v), d(u) + wuv) od 
(7) od 

Theorem 3.6.2. Algorithm 3.6.1 determines with complexity 0(\V\2) the dis
tances with respect to some vertex s in (G,w). More precisely, at the end of 
the algorithm 

d(s,t) = d(t) for each vertex t. 

Proof. Obviously, d(t) = oo if and only if t is not accessible from s. Now assume 
d(t) oo. Then d(s,t) < d(t), as the algorithm reaches t via a directed path 
of length d(t) from s to t. We wil l show the converse inequality d(t) < d(s,t) 
by using induction on the order in which vertices are removed from T. The 
first vertex removed is 5; trivially d(s) = 0 = d(s,s). Now suppose that the 
inequality is true for all vertices t that were removed from T before u. We 
may assume that d(u) is finite. Moreover, let 

gi e 2 en s = v0 l'i ... vn = u 

be a shortest path from s to u. Then 

h 
d(s,Vh) — ^^u'(ej) for h = 0,.. . ,n . 

Choose i as the maximal index such that v, was removed from T before u. By 
the induction hypothesis, 

i 
d(s,Vi) = d(vi) = y^^wjej). 



Let us consider the iteration where Vi is removed from T in the while loop. As 
t ' j+i is adjacent to Vi, the inequality d(vi+i) < d(vi) + w(ei+i) is established 
during this iteration. But d(vi+i) cannot be increased again in the subsequent 
iterations and, hence, this inequality still holds when u is removed. Thus 

r 
d(vi+i) < d(Vi) + ?x'(e,;+i) = d(s,v,) +w(el+i) = d(s,vl+1) < d(s,u). (3.3) 

Suppose first Vi+i 7̂  u, that is, i / n — 1. By equation (3.3), d(s,u) < d(u) 
would imply d(v<+i) < d(u); but then Uj+j would have been removed from T 
before u in view of the selection rule in step (4), contradicting the fact that 
we chose i to be maximal. Hence indeed d(u) < d(s.u). as asserted. Finally, 
for u = Wj+ii the desired inequality follows directly from equation (3.3). This 
establishes the correctness of Dijkstra's algorithm. For the complexity, note 
that in step (4) the minimum of the d(v) has to be calculated (for v £ T), 
which can be done with \T\-1 comparisons. In the beginning of the algorithm. 
\T\ = \V\, and then \T\ is decreased by 1 with each iteration. Thus we need 
0(|V| 2) steps altogether for the execution of (4). I t is easy to see that all other 
operations can also be done in 0(|V|2) steps. • 

We remark that the algorithm of Dijkstra might not work if there are 
negative weights in the network, even if no cycles of negative length exist. Note 
that the estimate in equation (3.3) does not hold any more if iu(e,-+i) < 0. An 
algorithm which works also for negative weights can be found in Exercise 3.6.9. 

Exercise 3.6.3. Modify Dijkstra's algorithm in such a way that it actually 
gives a shortest path from s to t, not just the distance d(s, t). I f s is a root of 
G, construct an SP-tree for (G,w). 

Example 3.6.4. Consider the network given in Figure 3.7 with vertex set 
V = { 1 , . . . . 8}. With 8 = 1, Algorithm 3.6.1 is executed as follows, where the 
final values for d is indicated in bold face: 

start values: d ( l ) = = 0 
Iteration I: u = 1, T 
Iteration II: u = 5, T 
Iteration III: u = 3, T 
Iteration IV: u = 2, T 
Iteration V: u = 4, T 
Iteration VI: u = 6, T 
Iteration VII: u = 8, T 
Iteration VIII: u = 7, T 

{2,.... 8}, d(2) = 28, d(3) = 2, d(5) = 1: 
{2,3.4,6,7, 8}, d(2) = 9, d(3) = 2, d(6) = 27 
{2,4.6. 7.8}. d(2) = 9, d(6) = 26. d(8) = 29; 
{4,6.7,8} . d(4) = 18, d(6) = 19; 
{6.7,8} , d(6) = 19. d(7) = 26. d(8) = 25: 
{7.8}, d(8) = 20: 
{7 } ,d(7) = 26: 

Exercise 3.6.5. Calculate the distance s with respect to s = 1 for the under
lying undirected network. 

o.o r ne aigoritnm oi uijKstra 11 

Let us return to the complexity of Dijkstra's algorithm. Initializing the 
variables in (1) and (2) takes 0(|V|) steps. During the entire while loop, each 
edge e = uv is considered exactly once, namely during the iteration where u 
is removed from T. Thus step (6) contributes only 0(|£|) to the complexity 
of the algorithm, which is - at least for sparse graphs - much better than 
0(\V|2). Therefore it makes sense to t ry to reduce the number of comparisons 
in step (4) by using an appropriate data structure. 

Recall that a priority queue (sometimes also called a heap) is a data struc
ture consisting of a number of elements each of which is associated with a real 
number, its priority. Permissible operations include inserting elements accord
ing to their priority as well as determining and removing the element with the 
smallest priority; the latter operation is usually referred to as DELETEMIN. 
As shown in computer science, a priority queue with n elements can be imple
mented in such a way that each of these two operations can be executed with 
complexity O(logn); we need a refinement of this standard implementation 
which enables us also to remove a given element or reduce its priority with 
the same complexity O(logn). We do not go into any details here but refer 
the reader to [AhHU83] or [CoLR90]. Using these results, we put the vertex 
set of our digraph into a priority queue T in Dijkstra's algorithm, with d as 
the priority function. This leads to the following modified algorithm. 

Algorithm 3.6.6. Let (G, w) be a given network, where G is a graph or a 
digraph and all lengths w(e) are nonnegative. We denote the adjacency list 
of v by Av. Moreover, let T be a priority queue with priority function d. The 
algorithm calculates the distances with respect to a vertex s. 

Procedure DIJKSTRAPQ(G. w, s: d). 

( l ) r - { « } , d ( « ) « - 0 ; 
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(2) for s E V \ {s} do d{v) < - oo od; 
(3) while T ^ 0 do 
(4) u := min T; 
(5) DELETEMIN (T); 
(6) for w e A u do *• 
(7) ifd(«) = oo 
(8) then <— d(u) + wuv: 
(9) insert v w i th priority d(w) into T 

(10) else if d(w) + wuv < d(v) 
(11) then change the priority of v to d(v) <— d(u) + w. 
(12) fi 
(13) fi 
(14) od 
(15) od 

As noted before, each of the operations during the while loop can be per
formed in 0(log|V|) steps, and altogether we need at most O(|£|)-r-0(|V|) 
such operations. I f G is connected, this gives the following result. 

Theorem 3.6.7. Let (G,w) be a connected network, where w is nonnega
tive. Then Algorithm 3.6.6 (the modified algorithm of Dijkstra) has complexity 
0(\E\log\V\). • 

The discussion above provides a nice example for the fact that sometimes 
we can decrease the complexity of a graph theoretical algorithm by selecting 
more appropriate (which usually means more complex) data structures. But 
this is not a one-way road: conversely, graph theory is a most important tool 
for implementing data structures. For example, priority queues are usually 
implemented using a special types of trees (for instance, so-called 2-3-trees). 
A nice treatment of the close interplay between algorithms from graph theory 
and data structures may be found in [Tar83]. 

Exercise 3.6.8. Let s be a vertex of a planar network with a nonnegative 
length function. What complexity does the calculation of the distances with 
respect to s have? 

Using even more involved data structures, we can further improve the 
results of Theorem 3.6.7 and Exercise 3.6.8. Implementing a priority queue 
appropriately (for instance, as a Fibonacci Heap), inserting an element or re
ducing the priority of a given element can be done in 0(1) steps; DELETEMIN 
still requires 0(log n) steps. Thus one may reduce the complexity of Algorithm 
3.6.6 to 0(\E\ + \V\log jV'i); see [FiTa87j. The best theoretical bound known 
at present is 0(\E\ + (|V| log |V|)/(loglog |V|)); see [FrWi94]. This algorithm, 
however, is of no practical interest as the constants hidden in the big-0 nota
tion are too large. I f all lengths are relatively small (say, bounded by a constant 
C), one may achieve a complexity of 0{\E\ + [Vj(log C ) 1 / 2 ) ; see [AhMOT90j. 
For the planar case, there is an algorithm with complexity 0(|V|(log I V I ) 1 / 2 ) ; 
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see [Fre87j. A short but nice discussion of various algorithmic approaches of 
practical interest is in [Ber93]. More information about practical aspects may 
be found in [GaPa88] and [HuDi88]. 

To end this section, we present an algorithm which can also treat instances 
where negative lengths occur, as long as no cycles of negative length exist. This 
is due to Ford [For56] and Bellman [Bel58]. 

Exercise 3.6.9. Let (G,w) be a network without cycles of negative length. 
Show that the following algorithm calculates the distances with respect to a 
given vertex s and determine its complexity: 
Procedure BELLFORD(0 . to, s; d) 

(1) d ( * ) - 0 ; 
(2) for v £ V \ {s} do d(v) < - oo od; 
(3) repeat 
(4) for v e V do d'(v) <- d(v) od; 
(5) for v € V do d(v) <— min (d'(v), min {d'(u) + wuv: uv £ E}) od 
(6) until d(v) = d'(v) for all v e V. 

Apply this algorithm to Example 3.6.4, treating the vertices in the order 
1,...",8. 

3.7 A n a p p l i c a t i o n : T r a i n schedules 

In this section, we discuss a practical problem which can be solved using 
the algorithm of Dijkstra, namely finding optimal connections in a public 
transportation system.4 Such a system consists of several lines (of trains or 
buses) which are served at regular intervals. Typical examples are the German 
Intercity network or the American Greyhound bus lines. I f someone wants to 
use such a system to get from one point to another in the network, it may 
be necessary to change lines a couple of times, each time having to wait for 
the connection. Often there might be a choice between several routes; we 
are interested in finding the fastest one. This task is done in practice by 
interactive information systems, giving travellers the optimal routes to their 
destinations. For example, the state railway company of the Netherlands uses 
such a schedule information system based on the algorithm of Dijkstra, as 
described in [SiTu89]. We now use a somewhat simplified example to illustrate 
how such a problem can be modelled so that the algorithm of Dijkstra applies. 
For the sake of simplicity, we we restrict our interpretation to train lines and 
train stations, and we have our trains begin their runs at fixed intervals. Of 
course, any set of events occurring at regular intervals can be treated similarly. 

We begin by constructing a digraph G = (V. E ) which has the train sta
tions as vertices and the tracks between two stations as edges. W i t h each edge 

I owe the material of this section to my former student, Dr. Michael Guckert. 
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e, we associate a travel time / (e) ; here parallel edges might be used to model 
trains going at different speeds. Edges always connect two consecutive points 
of a line where the train stops, that is, stations a train just passes through do 
not occur on this line. Thus lines are just paths or cycles5 in G. With each line 
L , we associate a time interval TL representing the amount of time between 
two consecutive trains of this line. For each station v on a line L , we define 
the time cycle IL(?J) which specifies at which times the trains of line L leave 
station u; this is stated modulo TL- Now let 

L : Wo vi . . . W n_i vn 

be a line. Clearly, the time of departure at station %\ is the sum of the time of 
departure at station Vi-\ and the travelling time /(e^) from Vi-i to Vi, taken 
modulo T L . 6 Hence the values ti(vi) are determined as follows:7 

tL{v0) := sL (modTL): 
tz,(«») : = tt («t - i ) + f(et) (mod TL) for i = 1 , . . . , n. 

The schedule of line L is completely determined by (3.4): the trains depart 
from station V{ at the time ¿¿(«0 (modulo TL) in intervals of length TL-

Next we have to calculate the waiting times involved in changing trains. 
Let e = uv and e' = vw be edges of lines L and L ' , respectively. A train of 
line L' leaves the station v at the times 

tL'(v), tv{v) + TL,, tL>(v) + 2TL., ... 

and a train of line L reaches station v at the times 8 

tL(v), tL(v)+TL, tL(v)+2Ti, .... 

Now assume that L and L' have different time cycles. Then the waiting time 
depends not only on the time cycles, but also on the precise point of time 
modulo the least common multiple T of TL and TL> • Let us illustrate this by 
an example. Suppose the time cycle of line L is 12 minutes, while that of L' is 
10 minutes so that T = 60. For ti(v) = 0 and tL>{v) = 5 we get the following 
schedules at v: 

0 Remember the Circle line in the London Underground system! 
6 We wil l neglect the amount of time a train stops at station vt- This can be 

taken into account by either adding i t to the travelling time /(e<) or by introducing 
an additional term WL(V,) which then has to be added to t r ( t> , _ i ) + f(el). 

7 Note that we cannot just put tiivo) = 0, as different lines may leave their start 
stations at different times. 

8 More precisely, the trains of line L leave station v at these times, that is, they 
reach v a l itt le bit earlier. We assume that this, short time interval suffices for the 
process of changing trains, so that we can leave this out of our considerations as 
well. 
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Line L : 0 12 24 36 48 
Line V : 5 15 25 35 45 55 

Thus the waiting time for the next train of line L' varies between one minute 
and nine minutes in this example. To simplify matters, we now assume that 
all time cycles are actually the same. Then the waiting time at station v is 
given by 

U)(VLL>) = «L '0 ) - tL(v) (mod T) . 

This even applies in case L = L ' : then we do not have to change trains. 

Exercise 3.7.1. Reduce the case of different time cycles to the special case 
where all time cycles are equal. 

We now construct a further digraph G' = (V , E ' ) which will allow us to 
find an optimal connection between two stations directly by finding a shortest 
path. Here a connection between two vertices VQ and vn in G means a path 

P • VQ — V i . . . vn 

in G together with the specification of the line L7; corresponding to edge 
for i = 1 , . . . , n , and the travelling time for this connection is 

fie^ + W{VLIL2) + f(e2) + W{VL2L3) + • • • + w{vLn_lLn) + / ( e „ ) . (3.5) 

This suggests the following definition of G'. For each vertex v & V and each 
line L serving station v, we have two vertices (v,L)-m and (v,L)out in V'\ for 
each edge e — vw contained in some line L , there is an edge (u, L)out(w, L ) - m 

in E'. Moreover, for each vertex v contained in both lines L and L ' , there is an 
edge (v, L)in(v, L ' ) o u t . Then a directed path from VQ to vn in G' corresponds in 
fact to a connection between VQ and vn, and this even includes the information 
which lines to use and where to change trains. In order to obtain the travelling 
time (3.5) as the length of the corresponding path in G', we simply define a 
weight function w' on G' as follows: 

tt>'((l>, L ) o u t ( w , L)in) •= f{vw) 

w'{(v,L)in(v,L')out) := w{vLL<). 

Now our original problem is solved by applying Dijkstra's algorithm to the 
network (G1. w1). Indeed, we may find all optimal connections leaving station 
v by applying this algorithm (modified as in Exercise 3.6.3) starting from all 
vertices in {G',w') which have the form (v,L)out. 

In this context, let us mention some other problems concerning the design 
of a schedule for several lines having fixed time cycles, that is, the problem of 
how to choose the times of departure SL for the lines L for given time cycles 
TL . In general, we might want the desired schedule to be optimal with respect 
to one of the following objectives. 
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• The longest waiting time (or the sum of all the waiting times) should be 
minimal. 

• The shortest time interval between the departure of two trains from a 
station should be maximal; that is, we want a safety interval between 
successive trains. T 

• The sum of all travelling times between any two stations should be min
imal; we might also give each of the routes a weight in this sum corre
sponding to its importance, maybe according to the expected number of 
travellers. 

These problems are considerably more difficult; in fact, they are NP-hard in 
general, although polynomial solutions are known when the number of lines 
is small. We refer to the literature; in particular, for the first two problems 
see [Gul80], [Bur86], and [BrBH90]. The last problem was studied in detail 
by Guckert [Guc96], and the related problem of minimizing the sum of the 
waiting times of all travellers was treated by Domschke [Dom89]. Both these 
authors described and tested various heuristics. 

3.8 T h e a l g o r i t h m of F l o y d a n d W a r s h a l l 

Sometimes it is not enough to calculate the distances with respect to a certain 
vertex s in a given network: we need to know the distances between all pairs 
of vertices. Of course, we may repeatedly apply one of the algorithms treated 
before, varying the start vertex s over all vertices in V. This results in the 
following complexities, depending on the specific algorithm used. 

algorithm of Moore: 0{\V\\E\): 
algorithm of Dijkstra: 0(\V\3) or 0(\V\\E\ log \V\); 
algorithm of Bellman and Ford: 0(\V\2\E\). 

These complexities could even be improved a bit according to the remarks 
at the end of Section 3.6. Takaoka [Tak92] presented an algorithm with com
plexity 0([V"|3(log log \V\/ log I V I ) 1 / 2 ) . In the planar case one can achieve a 
complexity of 0(|V"|2); see [Fre87]. 

In this section, we study an algorithm for this problem which has just 
the same complexity as the original version of Dijkstra's algorithm, namely 
0(|V*|3). However, it offers the advantage of allowing some lengths to be neg
ative - though, of course, we cannot allow cycles of negative length. This 
algorithm is due to Floyd [Flo62], see also Warshall [War62], and works by 
determining the distance matrix D = (d(v, to ) ) „ , K 6 v of our network. 

Algorithm 3.8.1 (Algorithm of Floyd and Warshall) . Let (G .u) be 
a network not containing any cycles of negative length, and assume V = 
{ 1 , . . . , n). Put Wij = co if ij is not an edge in G. 
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Procedure FLOYD(G, w: d) 

(1) for i = Ì to n do 
(2) for j ss 1 to n do 
(3) if i 7+ j then d(i.j) <— wi3 else d(i. j) <— 0 fi 
(4) od 
(5) od; ' 
(6) for k = 1 to n do 
(7) for i = 1 to n do 
(8) for j = 1 to n do 
(9) d(Lj) <- mm(d(i,j).d(i,k) + d(k,j)) 

(10) od 
(11) od 
(12) od 

Theorem 3.8.2. Algorithm 3.8.1 computes the distance matrix D for (G,w) 
with complexity 0(|V| 3). 

Proof. The complexity of the algorithm is obvious. Let D0 — (<&•) denote the 
matrix defined in step (3) and Dk = (d*,) the matrix generated during the 
fc-th iteration in step (9). Then D0 contains all lengths of paths consisting 
of one edge only. Using induction, it is easy to see that (d*,) is the shortest 
length of a directed path from i to j containing only intermediate vertices 
from { 1 , . . . ,k}. As we assumed that (G,w) does not contain any cycles of 
negative length, the assertion follows for k = n. • 

Exercise 3.8.3. Modify algorithm 3.8.1 so that it not only calculates the 
distance matrix, but also determines shortest paths between any two vertices. 

Example 3.8.4. For the network shown in Figure 3.8, the algorithm of Floyd 
and Warshall computes the accompanying matrices. 

Exercise 3.8.5. Apply Algorithm 3.8.1 to the network in Figure 3.9 [Law76]. 

In Section 2.6, we looked at acyclic digraphs associated with partially 
ordered sets. Such a digraph G is transitive: if there is a directed path from 
u to v. then G has to contain the edge uv. Now let G be an arbitrary acyclic 
digraph. Let us add the edge uv to G for each pair of vertices [u, v) such that 
v is accessible from u, but uv is not already an edge . This operation yields 
the transitive closure of G. Clearly, the transitive closure of an acyclic digraph 
is again acyclic and thus corresponds to a partially ordered set. By definition, 
two vertices u and v have distance d(u, v) ^ oo if and only if uv is an edge 
of the transitive closure of G. Hence the algorithm of Floyd and Warshall can 
be used to compute transitive closures with complexity 0(|V| 3). 

Exercise 3.8.6. Simplify Algorithm 3.8.1 for computing the transitive clo
sure by interpreting the adjacency matrix of an acyclic digraph as a Boolean 
matrix; see [War62], 
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Let us mention a further way of associating an acyclic digraph to a partially 
ordered set. More generally, consider any acyclic digraph G. I f uv is an edge 
in G and i f there exists a directed path of length > 2 from u to v in G, 
we remove the edge uv from G. This operation yields a digraph called the 
transitive reduction G r e d of G. I f G is the digraph associated with a partially 
ordered set as in Section 2.6, G r e d is also called the Hasse diagram of G. I f we 
want to draw a Hasse diagram, we usually put the vertices of equal rank on 
the same horizontal level. Figure 3.10 shows the Hasse diagram of the partially 
ordered set of the divisors of 36. The orientation of the edges is not shown 
explicitly: i t is understood that all edges are oriented from bottom to top. As 
an exercise, the reader might draw some more Hasse diagrams. 

Exercise 3.8.7. Design an algorithm for constructing the reduction of an 
acyclic digraph with complexity 0 ( jV| 3 ) and show that G and G r e d have the 
same transitive closure. Hint: Modify the Floyd and Warshall algorithm so 
that it may be used here to determine longest paths. 

For more about the transitive closure and the transitive reduction of an 
acyclic digraph see [Meh84]. Schnorr [Schn78] gave an algorithm for construct
ing the transitive closure with an average complexity of 0(|£'|). 

Let us consider a final application of the algorithm of Floyd and War-
shall. Sometimes we are interested in finding the center of some network. 9 Let 
(G, w) be a network not containing any cycles of negative length. Then the 
eccentricity of a vertex v is defined as 

s(v) = max {d(v, u): u £ V] . 

9 I t is obvious how this notion could be applied in the context of traffic or com
munication networks. 
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Fig . 3.10. Hasse diagram of the divisors of 36 

A center of a network is a vertex having minimal eccentricity. The centers 
of a given network can be determined easily using the algorithm of Floyd and 
Warshall as follows. At the end of the algorithm, e(i) simply is the maximum 
of the z-th row of the matrix D = (d(i,j)), and the centers are those vertices 
for which this maximum is minimal. For example, the vertices of the network 
of Example 3.8.4 have eccentricities e(l ) = 4, e(2) = 6, e(3) = 4, e(4) = 
5 and e(5) = 6, so that 1 and 3 are centers of the network. I t is obvious 
that the complexity of the additional operations needed - namely finding the 
required maxima and minima - is dominated by the complexity 0(|Vj 3 ) of 
the algorithm of Floyd and Warshall. Thus we have the following result. 

Theorem 3.8.8. Let N be a network without cycles of negative length. Then 
the centers of N can be determined with complexity 0(\V\3). • 

If we take all edges in a given graph (directed or not) to have length 1, 
the above definition yields the eccentricities of the vertices and the centers 
of the graph in the graph theory sense. Sometimes we are interested in the 
maximal eccentricity of all vertices of a graph. This value is called the diameter 
of the graph; again, this is a notion of interest in communications networks, 
see [Chu86]. For more on communication networks, we also refer to [Bie89] 
and [Ber92]. I t is a difficult (in fact, NP-hard) problem to choose and assign 
centers for networks under the restrictions occurring in practical applications, 
see [BaKP93]. 

o.y L.ycies ot negative length at 

To close this section, we briefly discuss the dynamic variant of the problem 
of determining shortest paths between any two vertices in a network. Suppose 
we have found a solution for some optimization problem, using an appropriate 
algorithm. For some reason, we need to change the input data slightly and 
find an optimal solution for the modified problem. Can we do so using the 
optimal solution we know already, without having to run the whole algorithm 
again? For our problem of finding shortest paths, this means keeping up to 
date the distance matrix D as well as information needed for constructing 
shortest paths (as, for example, the matrix P = (p(i,j)) used in the solution 
of Exercise 3.8.3) while inserting some edges or reducing lengths of edges. 
Compare this procedure with calculating all the entries of the matrices D and 
P again. I f all lengths w(e) are integers in the interval [1,(7], it is obvious 
that at most 0(Cn2) such operations can be performed because an edge may 
be inserted at most once, and the length of each edge can be reduced at 
most C times. While a repeated application of the algorithm of Floyd and 
Warshall for a sequence of such operations would need 0 ( C n 5 ) steps, it is 
also possible to solve the problem with complexity just 0(Cn3 log nC), using 
an adequate data structure. I f we are treating an instance with graph theoretic 
distances, that is. for C = 1, a sequence of 0(n2) insertions of edges needs 
only 0 ( n 3 log n) steps. We refer the reader to [AuIMN91] for this topic. 

3.9 Cycles o f negat ive l e n g t h 

Later in this book (when treating flows and circulations in Chapter 10), we 
wil l need a method to decide whether a given network contains a directed 
cycle of negative length; moreover, we should also be able to find such a cycle 
explicitly. We shall now modify the algorithm of Floyd and Warshall to meet 
these requirements. The essential observation is as follows: a network (G, w) 
contains a directed cycle of negative length passing through the vertex i if 
and only if Algorithm 3.8.1 yields a negative value for d(i, i). 

Algorithm 3.9.1. Let (G, w) be a network with vertex set V = { 1 , . . . , n}. 
Procedure NEGACYCLE(G, w; d. p, neg, K) 

(1) neg <- false, k <— 0; 
(2) for i = l t o n do 
(3) for j = 1 to n do 
(4) if i ^ j then d{i.j) «- tuy else d(i, j) <- 0 fl; 
( 5 ) if i = j or d(i,j) = cx; then p(i.j) «— 0 else p(i.j) <— i fi 
(6) od 
(7) od: 
(8) while neg = false and k < n do 
(9) k ^ j f e + 1; 

(10) for i = 1 to n do 
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11) if d{i,k) + d(k,i) < 0 
12) then neg — true; CYCLE(G, p, k, i; K) 
13) else for j = 1 to n do 
14) if d(i,k) + d{k,j) < d{i,j) 
15) t h e n d(i,j)<-d(i,k) + d(k,j);p(i,j)<-p(k,j) * 
16) fi 
17) od 
18) f i 
19) od 
20) od 

Here CYCLE denotes a procedure which uses p for constructing a cycle of 
negative length containing i and k. Note that p{i,j) is. at any given point of 
the algorithm, the predecessor of j on a - at that point of time - shortest 
path from i to j . CYCLE can be described informally as follows. First, set 
t'o = i, then vx = p(k. i), v2 = p(k, Vi), etc., until va = k = p(k. va-i) for some 
index a. Then continue with va+\ = p{i-k), va+2 = p(i,va+i), etc., until an 
index b is reached for which va+b = v0 = i = p(i. va+b-l)- Now the cycle we 
have found uses each edge in the direction opposite to its orientation, so that 
(va+b = v0,va+b-i; • • - ,vi,v0) is the desired directed cycle of negative length 
through i and k. I t can then be stored in a list K. We leave it to the reader 
to state this procedure in a formally correct way. 

If (G, ui) does not contain any directed cycles of negative length, the vari
able neg has value false at the end of Algorithm 3.9.1. In this case, d contains 
the distances in (G, w) as in the original algorithm of Floyd and Warshall. 
The matrix (p(i,j)) may then be used to find a shortest path between any 
two given vertices; this is similar to the procedure CYCLE discussed above. 
Altogether, we get the following result. 

Theorem 3.9.2. Algorithm 3.9.1 decides with complexity 0(|V*|3) whether or 
not a given network (G, w) contains cycles of negative length; in case it does, 
such a cycle is constructed. Otherwise, the algorithm yields the distance matrix 
(d ( t , j ) ) for (G,w). • 

Exercise 3.9.3. Let G be a digraph on n vertices having a root s. and let 
a i b e a length function on G. Modify the algorithm of Bellman and Ford 
(see Exercise 3.6.9) so that it determines whether (G. w) contains a cycle of 
negative length. I f there is no such cycle, the algorithm should determine an 
SP-tree with root s using a procedure SPTREE. Write down such a procedure 
explicitly. 

Exercise 3.9.4. Modify the algorithm of Floyd and Warshall so that it de
termines the shortest length of a directed cycle in a network not containing 
any cycles of negative length. 
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3.10 P a t h algebras 

Let (G,u>) be a network without cycles of negative length. According to Bell
man's equations (Proposition 3.4.1), the distances Ui with respect to a vertex 
i then satisfy the conditions 

(B) ui = 0 and Ui = mm {uk + w^: i ^= k} for i = 2 , . . . , n . 

In this section, we consider the question whether such a system of equations 
might be solved using methods from linear algebra. In fact, this is possible 
by introducing appropriate algebraic structures called path algebras. We only 
sketch the basic ideas here; for details we refer to the literature, in particular 
[Car71, Car79, GoMi84, Zim81]. 1 0 

We begin with a suitable transformation of the system (B). Recall that 
we put Wij = oc if ij is not an edge of our network; therefore we extend K to 
R = l U {oo}. Moreover, we introduce two operations © and * on M: 

a © b := mm(a. b) and a * b := a + b, 

where, as usual, we define a + oc to be oo. Obviously, (B) can be written as 

u i = min (0, min {uk + wk\ : k ^ 1}) and 
Ui = min (oo, min {uk + wki : k / i}), 

since (G,w) does not contain any cycles of negative length. Using the opera
tions introduced above, we get the system of equations 

n n 
(B') U l = * i o f c l ) ©0 , m = 0(u f e * wki) e oo, 

fc=i it=i 

where we set wH = oo for i = 1 , . . . , n . We can now define matrices over K and 
apply the operations © and * to them in analogy to the usual definitions from 
linear algebra. Then (B') (and hence (B)) can be written as a linear system 
of equations: 

(B") u « u * W® b, 

where u = (t» i , . . . , un), b = (0, oo, . . . , oo) and W = {wl3)U3=l n . 
Thus Bellman's equations_may be viewed as a linear system of equations 

over the algebraic structure (M, ©. *) . Then the algorithm of Bellman and Ford 
given in Exercise 3.6.9 admits the following interpretation. First set 

u ( 0 ) = b and then recursively u^ = u y f e - 1 ^ * W © b. 

until the sequence eventually converges to u ( f c ) = u<-k~l'>, which in our case 
occurs for k = n or earlier. Hence the algorithm of Bellman and Ford is 

1 0 T h i s section is included just to provide some more theoretical background. As 
it wi l l not be used in the rest of the book, i t may be skipped. 


