Section 3.4 Packet-Routing Algorithms 511

3.4 Packet-Routing Algorithms

One of the most important components of any large-scale general-purpose
parallel computer is its packet-routing algorithm. This is because most
large-scale general-purpose parallel machines spend a large portion of their
resources making sure thai the right data gets to the right place within a
reasonable amount of time.

We already studied packet-routing algorithms for arrays in Chapter 1
and meshes of trees in Chapter 2. Although the algorithms described in
these chapters are optimal for arrays and meshes of trees, they are not es-
pecially eflicient in a general setting. For example, the routing algorithms
for arrays use few processors but are relatively slow. The routing algo-
rithms for meshes of trees, on the other hand, are fast but use an excessive
number of processors.

We have also studied the packet-routing problem for hypercubic net-
works in Sections 3.2 and 3.3. In particular, we showed how to solve any
fixed N-packet permutation routing problem in O(log N) steps on an N-
processor butterfily or shuffle-exchange graph in Theorems 3.12 and 3.16.
The solution to a routing problem found by this approach is fast and ef-
ficient, but suffers from the limitation that there is no O(log N)-step al-
gorithm known for finding the routing paths on-line. In other words, we
proved in Theorems 3.12 and 3.16 that there is a fast and efficient solu- .
tion to any permutation routing problem on a hypercubic network, but we
don’t know how to find the solution quickly in parallel. For some applica-
tions, this constraint doesn’t matter, since we can afford to precompute the
solution (off-line) and then store the routing information in the network.
For many applications, however, the limitation is crucial, since we may
not know the routing problem ahead of time. For such applications, we
will need to develop on-line routing algorithms (i.e., algorithms for which
the local routing decisions are made without precomputation and without
knowledge of the global routing problem).

In this section, we describe several on-line algorithms for routing on hy-
percubic networks. For the most part, the algorithms will perform quickly
(taking ©(log N) steps) and efficiently (using N processors to route N pack-
ets), although all of the algorithms described in this section can perform
very badly in the worst case. In Section 3.5, we will describe algorithms
for sorting that can be used to construct routing algorithms that are guar-
anteed to always perform well, but the sorting-based algorithms are quite

512 Section 3.4 Packet-Routing Algorithms

complicated and are often not as useful in practice.

We begin our discussion of packet-routing algorithms with some defi-
nitions and a description of some of the most common routing models in
Subsection 3.4.1. We then define the greedy routing algorithm, and analyze
its worst-case performance in Subsection 3.4.2. Unfortunately, we will find
that the worst-case performance of the greedy algorithm is very poor and
that several important routing problems exhibit worst-case performance.

On the other hand, there are also large classes of important problems
for which the greedy algorithm performs very well. For example, we will
show in Subsection 3.4.3 that the greedy algorithm performs optimally for
packing, spreading, and monotone routing problems. These special classes
of routing problems arise in many applications, and we will use them fre-
quently throughout the remainder of Chapter 3. For example, we show
in Subsection 3.4.3 how to decompose an arbitrary routing problem into
a sorting problem and a monotone routing problem. Since any monotone
routing problem can be solved in O(log N) steps using the greedy algo-
rithm, this gives us an automatic way to convert any sorting algorithm
into a packet-routing algorithm. Even though sorting N items quickly
on a hypercubic network is a challenging task, this means that all of the
sorting algorithms that are described in Section 3.5 can be converted into
packet-routing algorithms with very little additional effort.

Greedy algorithms also perform well for average-case routing problems.
In fact, we will show in Subsection 3.4.4 that almost all N-packet-routing
problems can be solved in O(log) steps by using the greedy algorithm on
an N-processor hypercubic network. Hence, we will find that the greedy al-
gorithm is optimal (up to constant factors) for random routing problems in
a hypercubic network. This fact is quite important, since so many parallel
machines use variations of the greedy algorithm to solve routing problems.
In addition, we can use this fact to design a randomized algorithm for solv-
ing worst-case problems. In particular, we will show in Subsection 3.4.5
how to use randomness to convert any worst-case one-to-one routing prob-
lem into two average-case problems, thereby solving any one-to-one routing
problem in O(log N) steps with high probability.

One problem with the naive greedy algorithm is that it allows packets
to pile up at certain nodes in the network, resulting in queues which (for

most routing problems) can grow as large as ©(log V) in size. In Subsec-
tion 3.4.6, we show how to modify the naive greedy algorithm so that all
the queues stay small, and so that the overall performance remains good.

"

3.4.1 Definitions and Routing Maodels 513

We also show how to generalize the result to apply to a much larger class
of networks (including arrays).

Another problem with the naive greedy algorithm is that it doesn’t
always work well for some many-to-one routing problems, even if random-
ization is used. In Subsection 3.4.7, we show how to modify the naive
greedy algorithin to handle many-to-one routing problems. We also de-
scribe an effective strategy for combining packets that are headed for the
same destination, if that is desired.

In Subsection 3.4.8, we describe a variation of the greedy routing al-
gorithm known as the information dispersal algorithm. The information
dispersal approach to routing makes use of coding theory to partition a
packet into many subpackets, only some fraction of which need to be suc-
cessfully routed in order for the contents of the packet to be reconstructed
at the destination. As a consequence, some packet components that get
stuck in a congested area or that encounter a faully component can be
discarded without harm. As we will see in Section 3.6, information disper-
sal is also a useful tool when it comes to organizing data in a distributed
Memaory.

We conclude our study of packet routing with a discussion of circuit-
switching and bit-serial routing algorithms in Subsection 3.4.9. The algo-
rithms described n this subsection differ from those discussed in Subsec-
tions 3.4.4-3.4.8 in that each packet needs to have a dedicated, uncongested
path through the network from its source to its destination iu order for the
message to be transmitted, Even in this more restricted routing model,
however, we find that the greedy algorithm performs fairly well for most
(i.e., random) routing problems.

[

3.4.1 Definitions and Routing Models

As was mentioned in Section 1.7, there are many different types of rout-
ing models. For the most part, we will focus our attention on the siore-
and-forward model (also known as the packet-switching model) of packet
routing in Section 3.4. In the store-and-forward model, each packet is main-
tained as an entity that is passed from node to node as it moves through
the network and a single packet can cross each edge during each step of the
routing. Depending on the algorithm, we may or may not allow packets to
pile up in quenes located at each node. When queues are allowed, we will
generally make efforts to keep them from getting very large.

In Subsection 3.4.9, we consider the circuit-switching (or path-lockdown)

514 Section 3.4 Packet-Routing Algorithms

model of routing. In the circuit-switching model of routing, the entire path
from the source of a packet to its destination must be dedicated to the
packet in order for the packet’s data to be transmitted.

For the most part, we will focus our attention on stafic routing prob-
lems (i.e., those for which the packets to be routed are present in the
network when the routing commences) in Section 3.4. Many of the results
that we obtain can also be applied to dynamic routing problems (in which
packets arrive.at the network at arbitrary times and the routing proceeds
in a continuous fashion), although we will only specifically discuss the case
of dynamic routing problems in Subsection 3.4.4.

There are many different types of static routing problems. Generally,
we will assume that each processor starts with at most one packet, and, for
the most part, we will focus our attention on the simplest case of one-to-one
routing problems. A rouiing problem is said to be one-fo-one if at most
onc packet is destined for any processor and if each packet has precisely one
destination. We will also consider many-to-one and one-to-many routing
problems. A routing problem is said to be many-to-one if more than one
packet can have the same destination. It is said to be one-to-many if a
single packet can have multiple destinations (i.e., if copies of one packet
need to be sent to more than one destination).

When many packets are headed for the same destination, the usual
problems with congestion in the network can become cven more severe.
For example, if at most onc packet can be delivered to its destination
during each step, then most of the packets that are headed for a common
destination will experience significant delays due to (if for no other reason)
the bottleneck at the destination. Such bottlenecks are often referred to as
hot spots. Needless to say, hot spots can be a serious problem since they
can also cause packets which are hcaded for other destinations to become
delayed.

We will describe many methods for overcoming or minimizing the ef-
fects of hot spots and bottlenecks resulting from multiple packets having
the same destination. One approach to dealing with such problems is to
allow packets that are headed for the same desiination to be combined.
When combining is allowed, we can merge two packets P, and P, into a
single (possibly larger) packet provided that P, and P, are headed for the
same destination and that P, and P, are contained in the same node at
the same time. Packet-routing algorithms that make use of combining will
be described in Subsections 3.4.3 and 3.4.7.

Llan g Ko

N

b i i e mten e el s e bt e s ek

3.4.2 Greedy Routing Algorithms and Worst-Case Problems | 515

Throughout Section 3.4, we will insist that our algorithms be on-line..
This means that each processor (or switch) must decide what to do with
the packets that pass through it based only on its local control and the
information carried with the packets. In particular, we will not allow a
global controller to precompute routing paths as was done in the proofs of
Theorems 3.12 and 3.16. As a consequence, our algorithms will be able to
handle any packet-routing problem immediately using only local control.

As was mentioned previously in the text, the development of an cfficient
routing algorithm for a network enables that network to efliciently emulate
any other network. More gencerally, it will enable us to get the right data
to the right place at the right time. As a consequence of the on-line feature
of the routing algorithm, we will also be able to emulate abstract parallel
machines such as a parallel random access machine (PRAM). Methods for
simulating PRAMs on hypercubic networks will be studied extensively in
Section 3.6.

3.4.2 Greedy Routing Algorithms and Worst-Case
Problems

We begin our study of packet routing algorithms on hypercubic networks
by considering the problem of routing N packets from level 0 to level
log V in a log N-dimensional butterfly. In particular, we assume that each
node {(u,0) on level 0 of the butterfly contains a packet that is destined
for node (m(u),log N} on level log N where = : [1,N] — [1,N] is a per-
mutation. For example, we have illustrated an 8-packet routing problem
in Figure 3-48. In this example, we have selected 7 to be the bit-reversal
permutetion (i.e., w(uy -+ Uegn) = Uiog & - - - Uz, Where uy -« - uy,, v denotes
the binary representation of u).

At first glance, the routing problem shown in Figure 3-48 does not
seem particularly difficult. Indeed, any of the packets in the problem can
be easily routed to its destination simply by sending the packet along the
unigue path of length log N through the butterfly to its destination. For
example, we have illustrated this path for the packet destined for node
(001, 3) in Figure 3-48.

In general, the nnique path of length log N from a level 0 node {u, ()
to a level log N node (v,log N} in the butterfly is known as the greedy
path from {u,0) to {v,log N). In the greedy routing algorithm, each packet
is constrained to follow its greedy path. When there is only one packet
to route, it is easy to see that the greedy algorithm performs very well.
Trouble can arise when many packets have to be routed in parallel, however.

516 Section 3.4 Packet-Routing Algorithms |

row 000

row 001

row 010 :

row 011

row 100 %

row 101

row 110

row 111

Figure 3-48 An 8-packet routing problem on the three-dimensional butferfly.
In this problem, the packet starting at node (ujuqus,0) wants to go to node
(uguguy,3) for each uyusus. The greedy path for the packet starting at node
(100, 0) is shown in boldface.

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 517

The problem is that many greedy paths might pass through a single node
or edge. For example, the packets starting at nodes {000,0} and (100,0)
in Figure 3-48 both must pass through edge ({000, 1}, (000, 2)) on the way
to their destinations. Since only one of these packets can use the cdge at
a time, one of them must be delayed before crossing the edge.

It is not difficult to check that the congestion problem arising in the
example illustrated in Figure 3-48 is not overly serious. At most two packets
will ever contend for a middle-level edge, and every packet can reach its
destination in a total of 4 steps using the greedy algorithm.

When N is larger, however, the problem can be much more serious. In

fact, a total of
245~ /N/2

greedy paths will use the edge ((0 -0, '35%), {0---0, l—"ﬁ—‘%"—ﬂ)) inalog N-
dimeunsional butterfly when the greedy algorithm is used to route NV packets
according to the bit-reversal permutation. (Here, we have assumed for
simplicity that log N is odd. A similar result holds when log N is even. For
example, see Problem 3.179.) The reason is that the packet which starts
at node (u, -- -mﬂ%OU ---0,0) must travel to node (0-- '001“_05_2‘;1_ <y,
log N} along the path

(’U.l e -u:ogi:--loo" 0,0) — <0u2 - -’U.m;;«‘—lﬂ[]~-~0, 1>

!

r—
- <0---0uh,;~_1[)0--'U,Egh 3>
2 2
] _ .
. <0---000---0,MTH>
log N +3
-, <o---00u,asg10---0,—‘§%>
—P

— {0+ 00umnoy - uy, log V).

Note that this path contains the edge

log N —
e<0---000.--0,£_2~i> ﬂ<0---000-.-0,1ig%“—1>,

518 Section 3.4 Packet-Routing Algorithms

since the middle bit of both u; - - 2gr-s 00---0 and 0. - 00U = Uy
Tog N -1

2
is 0. There are 277~ = /N/2 possible values of u, e Uag N and

thus //NV/2 packets must traverse e when the greedy algorithm is used
to route the packets. This means that at least one of the packets will be
delayed by /N/2—1 steps, and that the greedy algorithm will take at least
VN/2+1log N — | steps to route all of the packets to their destinations. In
fact, the greedy algorithm takes precisely /N/2+log N — 1 steps to route
the bit-reversal permutation when log N is odd. (See Problem 3.181.)
Unfortunately, the bit-reversal perinutation is not the only permutation
that requires ©(v/N) steps to route using the greedy algorithmn. Indeed,
many natural permutations exhibit poor performance with the greedy al-
gorithm. For example, the commonly used transpose permulalion

Tr(ul T 1""&%;"”'&52;""4,[T Uog N) = 71'19%!}’_4,1 o Ulog NUL - ul‘lgzﬂ

also requires @(\/N) steps using the greedy algorithm. (See Problem 3.182.})

In fact, the bit-reversal permutation and the transpose permutation arc
(up to constant factors) worst-case permutations for greedy routing on the
butterfly. This is because every one-to-one routing problem can be solved
in O(v/N) steps on a log N-dimensional butterfly. We will prove this fact
in the following theorem.

~THEOREM 3.22 Given any routing problem on a log N-dimensional
butterfly for which at most one packel starts at each level 0 node and al
most one packet is destined for each level log N node, the greedy algo-
rithmn will route all the packets to their destinations in O(V'N) steps.

Proof. For simplicity, we will assume that log NV is odd. The case
when log NV is cven is handled in a similar fashion.

Let e be any edge in level ¢ of the log N-dimensional butterfly (0 <
1 < log V), and define n; to be the number of greedy paths that traverse
e. We first observe that n; < 2°7! for every i. This is because there are at
most 277 nodes at level 0 which can reach e using a path through levels
1, 2, ..., 7 — 1. For example, only the packets starting at nodes {000, 0)
and (100,0} can use the edge ({000, 1), {000, 2}) in a threc-dimensional
butterfly, no matter where each packet is destined.

Simpilarly, n; < 2'°8¥ i for every 4. This is becanse there are at
most 2'"% ¥~ nodes at level log N which can be reached frow e using a
paih through levels i+1, ¢+ 2, ..., log N. For example, only the packets

i q..a.f“.z:.)

e

i R

il g e L

3.4.2 G'reedg; Routing Algorithms and Worst-Case Problems 519

ending at noedes (000, 3) and {001, 3) can use the edge ({000, 1), {000, 2})),
no matter where the packets originate.

Since any packet crossing e can only be delayed by the other n; — 1
packets that want to cross the edge, the total delay encountered by any

packet ag it traverses levels 1, 2, ..., log V can be at most
log NV log N4 ;J-H log N
Z (n;,—1}) < Z 2071 4 Z 28Nt _og N
t=1 i=1 t_]_ua%

= 2 2
VN
V2
Hence, the total time to complete any one-to-one routing problem is at
most O(v N), as claimed. n

l”ﬁf:+] + 2|UEN*1 _ logN _ 2

—logN - 2.

The preceding analysis does not specifically deal with the problem of
packets piling up in queues. Indeed, the queues at nodes in the middle
levels of the butterfly might grow to be as large as ©(v/N) if we do not
limit their size. (See Problem 3.183.) We can restrict the growth of the
queues by not allowing any packet to move forward across an edge if there
are too many packets (say ¢) in the queue at the other end of the edge.
The problem with limiting the queue sizes, however, 1s that packets can be
delayed even further. In fact, if we restrict queue sizes to be O(1) in the
butterfly, then the greedy algorithm can be forced to use ©(N) steps to
route some permutations. {See Problem 3.185.)

For small values of V, the worst-case performance of the greedy routing
algorithm is not so bad. This is because VN and log N are not all that
different when N is small (say, less than 100). For large N, the worst-case
performance of the greedy algorithm becomes more of a problem, however,
particularly since so many of the natural permutations {such as bit-reversal
and transpose) exhibit worst-case performance for the greedy algorithm.

Of course, we know from Theorem 3.11 that every permutation can be
routed in 2log N steps on the butterfly with queues of size 1, provided that
we are allowed to use off-line precomputation and that we can make two
passes through the butterfly. Hence, it makes sense to use a special set of
precomputed routing paths (instead of the greedy algorithm) whenever we
encounter one of the known worst-case permutations. As a consequence,
we really don’t have to worry about the worst-case performance of the

520 Section 3.4 Packet-Routing Algorithms

bit-reversal and transpose permutations since we don’t have to route them
using the greedy algorithm.

Unfortunately, there are many bad permutations for the greedy algo-
rithm, and it is not feasible to precompute special routing paths for all
of them using Theorem 3.11. In an attempt to overcome this problem,
special-purpose routing algorithms have been developed that work well
for large classes of permutations that are not handled efficiently by the
greedy algorithm. For example, see Problems 3.188-3.191. While such
special-purpose algorithms can efficiently handle several natural permuta-
tions such as the transpose and bit-reversal permutations, they are still
not sufficient to efficiently handle all of the permutations for which the
greedy algorithm performs poorly. Indeed, we will have to cover a lot more
material before we are ready to describe routing algorithms that perform
well for all permutations.

In the preceding discussion, we concentrated on the problem of routing
packets from one end of the butterfly to the other. (Such routing prob-
lems are sometimes called end-f{e-end routing problems.) In practice, the
butterfly is often used to route packets in exactly this fashion. It is also
sometimes used to route packets between all of the nodes of the network.
When cach node of the log N-dimensional wrapped butterfly starts and fin-
ishes with one packet, and each of the log N packets is greedily routed (in
the same direction) first to the correct row and then to the correct node,
then each of the N log N packets will be routed to the correct destination
within ©(+/N log N) steps in the worst case. (Sce Problems 3.192-3.193.)

- For simplicity, we will continue to focus our study of hypercubic routing
algorithms on the problem of routing packets from one end of the butter-
fly to the other. The results that we obtain for this particular problem
can usually be extended to hold for most other hypercubic routing prob-
lems of interest. For example, results for end-to-end routing on a log V-
dimensional butterfly can be immediately extended to hold for arbitrary
routing problems {i.e., routing problems where every node may start with
a packet) on an N-node hypercube, since there is such a close relation-
ship between the edges of the log N-dimensional butterfly and the edges of
the N-node hypercube. Moreover, if the packets move through the hyper-
cube in a normal fashion, then the results can also be extended to hold for
arbitrary routing problems on any N-node hypercubic network.

Results for end-to-end routing on a butterfly can also be extended to
hold for arbitrary butterfly routing problems by first routing each packet

s

Rt el AR ot 2 el

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 521

to the level 0 node in its row, and then routing the packet to the level log NV
node in its destination row, before routing the packet to its correct des-
tination. The hard part of the routing is the end-to-end routing, since
routing packets within their rows can usually be accomplished in O(log N}
additional steps. In other words, solving an arbitrary routing problem on
a log N-dimensional butterfly is often not much harder than solving log N
end-to-end routing problems on the butterfly. In addition, by using pipelin-
ing, we will often find that solving log N end-to-end routing problems on
a butterfly is not much harder than solving a single end-to-end routing
problem on the butterfly.

Despite the fact that the greedy routing algorithm performs poorly
in the worst case, the greedy algorithm is very useful. In fact, we will
show that the greedy algorithm often performs exceptionally well. For
example, for many useful classes of permutations, the greedy algorithm
runs in log N steps, which is optimal. And, for most permutations, the
greedy algorithm runs in log N +o(log N) steps. (We prove these important
facts in Subsections 3.4.3 and 3.4.4, respectively.) As a conscquence, the
greedy algorithm is widely used in practice.

In what follows, we digress briefly from our study of greedy routing
algorithms on hypercubic networks in order to prove a general lower bound
on the time required for any greedylike algorithm to route a worst-case
permutation on an arbitrary network.

A General Lower Bound for Oblivious Routing %

A routing algorithm is said to be oblivious if the path travelled by each
packet depends only on the origin and destination of the packet (and not
on the origins and destinations of the other packets nor on congestion en-
countered during the routing). For example, the greedy routing algorithm
on the butterfly is oblivicus, since each packet follows the greedy path to
its destination,

In what follows, we will show that for any N-node, degree-d network
and any oblivious routing algorithimn, there is an N-packet one-to-one rout-
ing problem for which the algorithm will take Q(\/N /d) steps to complete
the routing. This means that the worst-case running time of any oblivious
or greedy routing algorithin on the butterfly will be Q(v/N), a far cry from
the desired bound of O(log N). In fact, this means that the worst-case run-
ning time of the greedy algorithm on any N-node bounded-degree network
is Q(v'N). For the hypercube, the worst-case bound will be Q(+/N/ log N).

