
B y Corol lary 4.2.6, det£?|S ^ 0 i f and only i f the edges of G corresponding 
to S form a tree; moreover, in th i s case, (det i?|S) 2 = 1. This proves the 
theorem. • 

Theorem 4.2.7 is contained i m p l i c i t l y in [Kirh47] . Not surpris ingly^ th is 
result may also be used to determine the number of spanning trees of a graph 
G by considering the incidence m a t r i x of any or ientat ion of G. We need the 
fol lowing simple lemma; then the desired result is an immediate consequence 
of th is lemma and Theorem 4.2.7. 

L e m m a 4.2.8. Let A be the adjacency matrix of a graph G and M the in
cidence matrix of an arbitrary orientation H of G, where both matrices use 
the same ordering of the vertices for numbering the rows and columns. Then 
MMT = diag(deg 1 , . . . , degn) - A. 

Proof. The (i, j ) - e n t r y of MMT is the inner product of the i-th and the j - t h 
row of M. For i ^ j , this entry is - 1 i f ij or ji is an edge of H and 0 otherwise. 
For i = j . we get the degree degi. • 

T h e o r e m 4.2.9. Let A be the adjacency matrix of a graph G and A' the 
matrix — A + diag(deg 1 , . . . , d e g n ) . Then the number of spanning trees of G 
is the common value of all minors of A' which arise by deleting a row and the 
corresponding column from A'. • 

I n Section 4.8, we w i l l give a different proof for Theorem 4.2.9 which avoids 
using the theorem of Cauchy and Binet . The m a t r i x A' is called the degree 
matrix or the Laplacian matrix of G. As an example, let us consider the case 
of complete graphs and thus give a t h i r d proof for Corol lary 1.2.11. 

E x a m p l e 4.2.10. Theorem 4.2.9 contains a formula for the number of a l l 
trees on n vertices; note t h a t this formula counts the different trees, not the 
isomorphism classes of trees. Obviously, the degree m a t r i x of Kn is A' — 
nl - J , where J is the m a t r i x having al l entries = 1. B y Theorem 4.2.9, the 
number of trees on n vertices is the determinant of a minor of A', t h a t is 

n - 1 - 1 
- 1 n - 1 

- 1 
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-1 . . . n - 1 

- 1 — n —n 
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= n " " 2 . 
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The fo l lowing exercise concerns a s imilar appl icat ion of the m a t r i x tree 
theorem; see [FiSe58]. A simple direct proof can be found in [Abu90] where 
this result is also used to give yet another proof for Corol lary 1.2.11. 

E x e r c i s e 4 .2 .11 . Use Theorem 4.2.9 to show t h a t the number of spanning 
trees of the complete b i p a r t i t e graph Km%n is mn~lnm~1. 

Note t h a t we can also define incidence matrices for graphs: the m a t r i x M 
has entry mtj = 1 i f vertex i is incident w i t h edge e3, and mij = 0 otherwise. 
B u t the statements analogous t o L e m m a 4.2.2 and Theorem 4.2.3 do not ho ld ; 
for example, the three columns of a cycle of l ength 3 are l inearly independent 
over Z. However, the s i tuat ion changes i f we consider the incidence m a t r i x M 
as a m a t r i x over Z 2 . 

E x e r c i s e 4 .2 .12. Prove the analogues of 4.2.2 t h r o u g h 4.2.4 for graphs, where 
M is considered as a b inary m a t r i x . 

The incidence m a t r i x M of a graph - considered as a m a t r i x over the inte 
gers - is not un imodular i n general, as the fol lowing exercise shows. Moreover, 
i t provides a further i m p o r t a n t characterization of b ipar t i t e graphs. 

E x e r c i s e 4 .2 .13 . Let G be a graph w i t h incidence m a t r i x M. Show t h a t G is 
b ipar t i t e i f and only i f M is t o t a l l y un imodular as a m a t r i x over Z. H i n t : The 
proof t h a t u n i m o d u l a r i t y of M is necessary is s imilar to the proof of Theorem 
4.2.5. T h e converse can be proved indirect ly . 

E x e r c i s e 4.2.14. Let e be an edge of Kn. Determine the number of spanning 
trees of Kn \e. 

E x e r c i s e 4 .2 .15 . Let G be a forest w i t h n vertices and m. edges. How many 
connected components does G have? 

Sometimes, a list of a l l spanning trees of a given graph is needed, or an 
arb i t rary choice of some spanning tree of G (a random spanning tree) . These 
tasks are treated in [CoDN89]; in par t i cu lar , i t is shown t h a t the la t ter problem 
can be solved w i t h complexity 0 (|V| 3 ) . 

4.3 M i n i m a l spanning trees 

I n th is section, we consider spanning forests in networks. Thus let (G, w) be 
a network. For any subset T of the edge set of G. we define the weight of T 
by 

w{T) = ]Tu>(e). 
eer 

A spanning forest of G is called a minimal spanning forest i f i ts weight is 
m i n i m a l among a l l the weights of spanning forests; s imilarly, a minimal span
ning tree has m i n i m a l weight among spanning trees. We restrict ourselves to 
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spanning trees: the general case can be treated by considering a m i n i m a l span
n ing tree for each connected component of G. Thus , we now assume G to be 
connected. 

M i n i m a l spanning trees were first considered by Boruvka [Bor26a, Bor26b] . 
Short ly after 1920, electricity was to be supplied to the r u r a l area of South
ern Moravia : the problem of f inding as economical a solution as possible for 
the proposed network was presented t o Boruvka. He found an a lgor i thm for 
construct ing a m i n i m a l spanning tree and published i t i n the two papers cited 
above. We w i l l present his a lgor i thm i n the next section. Boruvka's papers 
were overlooked for a long t ime; often the solution of the m i n i m a l spanning 
tree problem is a t t r i b u t e d t o Kruska l and P r i m [Kru56, Pri57] , a l though b o t h 
of t h e m quote Boruvka; see the interesting article [GrHe85] for a history of 
th is problem. There one also finds references to various applications reaching 
f rom the obvious examples of construct ing traffic or communicat ion networks 
to more remote ones in classification problems, automatic speech recognit ion, 
image processing, etc. 

As the or ientat ion of edges is insignificant when looking at spanning trees, 
we may assume t h a t G is a graph. I f the weight funct ion w should be constant, 
every spanning tree is m i n i m a l ; then such a tree can be found w i t h complexity 
0(|-E|) using a BFS, as described in Section 3.3. For the general case, we 
shall give three efficient algorithms i n the next section. Corol lary 1.2.11 and 
Exercise 4.2.11 show t h a t the examinat ion of al l spanning trees would be a 
method having non-polynomial complexity. 

B u t first we characterize the m i n i m a l spanning trees. Let us introduce the 
fol lowing notat ion . Consider a spanning tree T and an edge e not contained i n 
T. B y L e m m a 4.1.1, the graph arising f rom T by adding e contains a unique 
cycle; we denote th is cycle by Cr(e). The fol lowing result is of fundamental 
importance . 

T h e o r e m 4.3.1. Let (G.w) be a network, where G is a connected graph. A 
spanning tree T of G is minimal if and only if the following condition holds 
for each edge e in G\ T: 

w(e) > w(f) for every edge f in Cr(e). (4.1) 

Proof. F i r s t suppose t h a t T is m i n i m a l . I f (4.1) is not satisfied, there is an 
edge e i n G \ T and an edge / i n Cr(e) w i t h w(e) < w(f). Removing / f rom 
T splits T into two connected components, since / is a bridge. A d d i n g e t o 
T \ f gives a new spanning tree J " : as w(e) < w(f), T' has smaller weight 
t h a n T. Th is contradicts the m i n i m a l i t y of T. 

Conversely, suppose t h a t (4.1) is satisfied. We choose some m i n i m a l span
n ing tree T' and show w(T) = w{T'), so t h a t T is m i n i m a l as wel l . We use 
induct ion on the number k of edges i n T'\T. The case k = 0 ( that is. T = 7") 
is t r i v i a l . Thus let e' be an edge i n T' \T. Aga in , we remove e' f rom T'', 
so t h a t T' splits in to two connected components V\ and V2. I f we add the 
p a t h Crie') \ {e'} t o T' \ { e ' } , V\ and V2 are connected again. Hence Cr(e') 
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has t o conta in an edge e connecting a vertex in V\ to a vertex in V2. Note 
t h a t e cannot be an edge of T" , because otherwise T' \ {e1} wou ld s t i l l be 
connected. The m i n i m a l i t y of X" implies w(e) > w(e'): replacing e' by e in 
T', we ob ta in another spanning tree T " ; and i f w(e) < w(e'), th is tree would 
have smaller weight t h a n T", a contradic t ion . O n the other hand, by condit ion 
(4.1), wie') > w(e)\ hence w(e') = w(e) and w{T") = w{V). Thus T" is a 
m i n i m a l spanning tree as wel l . Note t h a t T" has one more edge in common 
w i t h T t h a n T'\ using induc t i on , we conclude w(T) = w(T") = w(T'). • 

Next we give another characterization of m i n i m a l spanning trees. To do 
so, we need two definitions. Let G be a graph w i t h vertex set V. A cut is a 
p a r t i t i o n S = {X.X1} of V into two nonempty subsets. We denote the set 
of al l edges incident w i t h one vertex in X and one vertex i n X' by E(S) 
or E(X.X'); any such edge set is called a cocycle. We w i l l require cocycles 
constructed f r o m trees: 

L e m m a 4.3 .2 . Let G be a connected graph and T a spanning tree of G. For 
each edge e of T, there is exactly one cut Sx(e) of G such that e is the only 
edge which T has in common with the corresponding cocycle E(Sr(e)). 

Proof. I f we remove e f rom T, the tree is d iv ided into two connected compo
nents and we get a cut Sr(e). Obviously, the corresponding cocycle contains 
e, but no other edge of T. I t is easy to see t h a t this is the unique cut is the 
w i t h the desired property. • 

T h e o r e m 4.3 .3 . Let (G.w) be a network, where G is a connected graph. A 
spanning tree T of G is minimal if and only if the following condition holds 
for each edge e € T: 

w(e) < w(f) for every edge f in E(Sr(e)). (4-2) 

Proof. F i rs t let T be m i n i m a l . Suppose t h a t there is an edge e i n T and an 
edge / i n E(Sr(e)) w i t h w(e) > w(f). T h e n , by removing e f rom T and 
adding / instead, we could construct a spanning tree of smaller weight t h a n 
T, a contradic t ion . 

Conversely, suppose t h a t (4.2) is satisfied. We want to reduce the statement 
to Theorem 4.3.1: thus we have t o show t h a t condit ion (4.1) is satisfied. Let 
e be an edge i n G\T and / ^ e an edge i n CV(e) . Consider the cocycle 
E(Sr(f)) defined by / . Obviously, e is contained in E(Sr(f))- hence (4.2) 
yields w(f) < w(e). • 

E x e r c i s e 4.3.4. Let (G.w) be a network, and let v be any vertex. Prove t h a t 
every m i n i m a l spanning tree has t o contain an edge incident w i t h v which has 
smallest weight among al l such edges. 

E x e r c i s e 4 .3 .5 . Let (G, w) be a network, and assume t h a t all edges have dis
t i n c t weights. Show t h a t (G, w) has a unique m i n i m a l spanning tree [Bor26a]. 
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4.4 T h e algorithms of P r i m , K r u s k a l and B o r u v k a 

I n th is section, we w i l l treat three popular algorithms for determining m i n i m a l 
spanning trees, al l of which are based on the characterizations given i n the 
previous section. Let us first deal w i t h a generic a lgor i thm which has trie 
advantage of al lowing a rather simple proof. The three subsequent algorithms 
are special cases of this general method which is due t o P r i m [Pri57]. 

A l g o r i t h m 4.4.1. Let G = (V, E ) be a connected graph w i t h vertex set V = 
{ 1 , . . . , n } and w: E —> K a weight funct ion for G. The a lgor i thm constructs 
a m i n i m a l spanning tree T for (G, w). 

P r o c e d u r e M I N T R E E ( G , w. T) 

(1) for i = 1 to n do V, <- { i } ; Tt *- 0 od ; 
(2) for k = 1 to n - 1 do 
(3) choose Vt w i t h Vt # 0; 
(4) choose an edge e = uv w i t h u € V ,̂ u ^ Vj , and to(e) < w(e') 

for al l edges e' = u'v' w i t h u ' € Vi, v' £ Vi\ 
(5) determine the index j for which v £ V, ; 
(6) V i ^ V t U V y , V$«-0; 
(7) r ^ T i U T j U { e } ; r i + - 0 ; 
(8) i f k = n - 1 t h e n r * - T , f i : 
(9) o d 

T h e o r e m 4.4.2. Algorithm 4-4-1 determines a minimal spanning tree for the 
network (G , u>). 

Proof. We use induct ion on i : = |T\| + . . . + \Tn\ t o prove the fol lowing c la im: 

For t = 0 , . . . , n — 1, there exists a m i n i m a l spanning tree T (4-3) 
of G containing T\,..., Tn. 

For t = n — 1, this c la im shows t h a t the a lgor i thm is correct. Clearly, (4.3) 
holds at the beginning of the a lgor i thm - before the loop (2) to (9) is executed 
for the first t ime - since t = 0 at t h a t po int . Now suppose t h a t (4.3) holds for 
t = k — 1, tha t is, before the loop is executed for the fc-th t ime . Let e = uv w i t h 
u £ Vl be the edge which is constructed in the fc-th i terat ion . I f e is contained 
in the tree T satisfying (4.3) for t = k — 1, there is no th ing t o show. Thus 
we may assume e ^ T. Then T U { e } contains the unique cycle C = Cr{e): 
obviously, C has t o contain another edge / = rs w i t h r £ Vi and s ^ V j . B y 
Theorem 4.3.1, w(e) > u>( / ) . On the other hand, by the choice of e in step 
(4), io(e) < w(f). Hence u>(e) = w(f), and T" = ( T U { e } ) \ { / } is a m i n i m a l 
spanning tree of G satisfying (4.3) for t = k. • 

O f course, we cannot give the precise complexity of A l g o r i t h m 4.4.1: th is 
depends b o t h on the choice of the index i i n step (3) and on the details of the 
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implementat ion . We now t u r n t o the three special cases of A l g o r i t h m 4.4.1 
mentioned above. A l l of t h e m are derived by m a k i n g steps (3) and (4) i n 
M I N T R E E precise. The first a l g o r i t h m was favored by P r i m and is generally 
known as the algorithm of Prim, a l though i t was already given by Jarn ik 
[Jar30]. 

A l g o r i t h m 4.4 .3 . Let G be a connected graph w i t h vertex set V = { 1 . . . . , n } 
given by adjacency lists Av, and let w: E —> R be a weight funct ion for G. 
P r o c e d u r e P R I M ( G , t c ; T ) 

(1) s ( i ) « - o , s - 0 , r « - 0 ; 

(2) for i = 2 to n do g(i) <— oo od ; 
(3) w h i l e 5 / V d o 
(4) choose i € V \ S such t h a t g(i) is m i n i m a l , and set S <— S U {i}; 
(5) i f i ^ 1 t h e n T < - T U {e(i)} fi: 
(6) for j £ Aln(V\ S) do 
(7) i f g(v) > w(ij) t h e n g(v) <— w(ij) and e(t') <— ij fi 
(8) o d 
(9) o d 

T h e o r e m 4.4.4. Algorithm 4-4-3 determines with complexity 0 (|V| 2 ) a min
imal spanning tree T for the network (G , w). 

Proof. I t is easy to see t h a t A l g o r i t h m 4.4.3 is a special case of A l g o r i t h m 4.4.1 
( w r i t t e n a b i t d i f ferently) : i f we always choose V\ i n step (3) of M I N T R E E , 
we get the a lgor i thm of P r i m . T h e funct ion g(i) introduced here is jus t used 
to s impl i fy finding the shortest edge leaving V\ = S. Hence the a lgor i thm is 
correct by Theorem 4.4.2; i t remains t o discuss its complexity. The whi le - l o o p 
is executed |V| times. D u r i n g each of these i terat ions, the comparisons in step 
(4) can be done i n at most \V\ — \S\ steps, so t h a t we get a complexity of 
0 (|V| 2 ) . As G is simple, th is is also the overall complexity : in step (6), each 
edge of G is examined exactly twice. • 

E x a m p l e 4 .4 .5 . Le t us apply A l g o r i t h m 4.4.3 t o the undirected version of 
the network of Figure 3.5. where we label the edges as follows: e\ = { 1 , 5 } , 
e 2 = { 6 . 8 } , e 3 = { 1 , 3 } , e 4 = { 4 , 5 } , e 5 = { 4 , 8 } , e 6 = { 7 , 8 } , e 7 = {6,7}^ 
eg = { 4 , 7 } , e 9 = { 2 , 5 } , e 1 0 - { 2 , 4 } , e „ = { 2 , 6 } , e 1 2 = { 3 , 6 } . e 1 3 = { 5 , 6 } . 
e i 4 = { 3 , 8 } , e i 5 = { 1 , 2 } . Thus the edges are ordered according t o their 
weight. We do not need really th is ordering for the a lgor i thm of P r i m , but 
w i l l use i t later for the a l g o r i t h m of Kruska l . The a lgor i thm of P r i m then 
proceeds as follows; the resul t ing m i n i m a l spanning tree is indicated by the 
bold edges in Figure 4.1. 
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F i g . 4 . 1 . A network 

Iteration l:i = l,S= { 1 } . T = 0. g(2) = 28, e(2) = e 1 5 . 5(5) = 1, 
e(5) = c 1 , 5 ( 3 ) = 2, e(3) = e 3 

Iteration 2: i = 5, 5 = { 1 , 5 } , T = { e i } . y(2) = 8, e(2) = e 9 , 5(4) = 5, 
e ( 4 ) = e 4 , 3(6) = 26. e ( 6 ) = e 1 3 

Iteration 3: 1 = 3, 5 = { 1 , 5 , 3 } , 7? = { e i , e 3 } , 5(6) = 24, e(6) = e 1 2 , 
5 ( 8 ) = 27, e(8) = e u 

Iteration 4: i = 4, S = { 1 , 5 , 3 , 4 } , T = { e i , e 3 , e 4 } , g(7) = 8, e(7) = e 8 , 
3(8) = 7, e(8) = e 5 

Iteration 5:i = 8,S= { 1 , 5 , 3 , 4 . 8 } , T = { d , e 3 , e 4 , e 5 } , 3(6) = 1, 
e(6) = e a , 3(7) = 7, e(7) = e 6 

Iteration 6: i = 6, S = { 1 , 5 . 3 . 4 , 8 , 6 } , T = { e 1 ; e 3 , e 4 , 6 5 , 6 2 } 
Iteration 7: i = 7, S — { 1 , 5 , 3, 4 ,8 ,6 , 7 } , T = { e 1 ; e 3 . e 4 , es, e2, eg} 
Iteration 8: i = 2, S = { 1 , 5 , 3 , 4 , 8 . 6 , 7 , 2 } , T = { e i , e 3 , e 4 , e 5 . e 2 , e 6 , e 9 } 

Now we t u r n to the second special case of A l g o r i t h m 4.4.1; this is due t o 
Kruska l [Kru56] . We first give a somewhat vague version. 

A l g o r i t h m 4.4.6. Let G = (V, E ) be a connected graph w i t h V = { 1 , . . . , n } , 
and let w: E —> R be a weight funct ion . The edges of G are ordered according 
to the i r weight, t h a t is, E = { e i , . . . , em} with tu(ei ) < . . . < w(em). 
P r o c e d u r e K R U S K A L ( G , w: T) 

(1) T<-0; 
(2) for fc = 1 to TTi do 
(3) i f efc does not form a cycle together w i t h some edges of T 

t h e n append to T fi 
(4) o d 
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Note t h a t the a lgor i thm of Kruska l is the special case of M I N T R E E where 
Vi and e are chosen in such a way t h a t w(e) is m i n i m a l among a l l edges which 
are s t i l l available: that is, among al l those edges which do not have b o t h 
end vertices i n one of the sets Vj and would therefore create a cycle. Aga in , 
Theorem 4.4.2 shows t h a t the a lgor i thm is correct. A l ternat ive ly , we could 
also appeal to Theorem 4.3.1 here: i n step (3) , we choose the edge wh i ch does 
not create a cycle w i t h the edges already i n the forest and which has m i n i m a l 
weight among a l l edges w i t h th is property . Thus the set T of edges constructed 
satisfies (4.1), prov ing again t h a t T is a m i n i m a l spanning tree. 

Let us consider the complexity of A l g o r i t h m 4.4.6. I n order t o arrange the 
edges according t o their weight and to remove the edge of smallest weight, 
we use the data structure priority queue already described in Section 3.6. 
Then these operations can be performed i n 0(|.£7| log |-E7|) steps. I t is more 
diff icult t o estimate the complexi ty of step (3) of the a lgor i thm: how do we 
check whether an edge creates a cycle, and how- many steps does th i s take? 
Here i t helps t o view the a l g o r i t h m as a special case of A l g o r i t h m 4.4.1. I n 
step (1) , we begin w i t h a ( t o t a l l y ) disconnected forest T on n = \V\ vertices 
which consists of n trees w i t h o u t any edges. D u r i n g each i t e ra t i on , an edge 
is added t o the forest T i f and only i f its two end vertices are contained in 
different connected components of the forest constructed so far; these two 
connected components are then jo ined by adding the edge to the forest T. 
Therefore we may check for possible cycles by keeping a l ist of the connected 
components; for th is task, we need a data s tructure appropriate for t r e a t i n g 
part i t i ons . I n part i cu lar , operations l ike dis joint unions ( M E R G E ) and finding 
the component containing a given element should be easy to per form. Using 
such a data s tructure , we can w r i t e down the fo l lowing more precise version 
of A l g o r i t h m 4.4.6. 

A l g o r i t h m 4.4.7. Let G = (V*, E ) be a connected graph w i t h V = { 1 , . . . , n } , 
and let w: E —» R be a weight funct ion on G. We assume t h a t E is given as 
a list of edges. 
P r o c e d u r e K R U S K A L (G,u> ;T) 

(1) T t - 0 ; 
(2) for i — 1 to n do Vi *— {i} od ; 
(3) put E in to a p r i o r i t y queue Q w i t h p r i o r i t y funct ion w; 
(4) w h i l e Q 0 do 
(5) e : = D E L E T E M I N ( Q ) ; 
(6) find the end vertices u and v of e; 
(7) find the components Vu and Vv containing u and v, respectively; 
(8) i f Vu Vv t h e n M E R G E ( V U . Vv); T «- T U { e } fi 
(9) o d 

Now i t is easy to determine the complexity of the i t e ra t i on . F i n d i n g and 
removing the m i n i m a l edge e in the p r i o r i t y queue takes 0( log|£|) steps. 
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Successively merging the original n t r i v i a l components and finding the com
ponents in step (7) can be done w i t h a t o t a l effort of O ( n l o g n ) steps: see 
[AhHU83] or [CoLR90]. As G is connected, G has at least n — 1 edges, so t h a t 
the overall complexity is 0(\E\ l og\E\) . We have established the fol lowing 
result . T 

T h e o r e m 4.4.8. The algorithm of Kruskal (as given in 4-4-7) determines 
with complexity 0(\E\\og\E\) a minimal spanning tree for (G,w). • 

For sparse graphs, this complexity is much better t h a n the complexity of 
the a lgor i thm of P r i m . I n practice, the a lgor i thm of Kruska l often contains one 
further step: after each merging of components, i t is checked whether there is 
only one component left ; i n this case, T is already a tree and we may stop the 
a l g o r i t h m . 

E x a m p l e 4.4.9. Let us apply the a lgor i thm of Kruska l to the network of 
Figure 4.1. The edges e i , e 2 , e^, e4,e5,ee and eg are chosen successively, so t h a t 
we obta in the same spanning tree as w i t h the a lgor i thm of P r i m (a l though 
there the edges were chosen i n a different order) . This has to happen here, since 
our smal l example has only one m i n i m a l spanning tree. I n general, however, 
the algorithms of P r i m and Kruska l w i l l y ie ld different m i n i m a l spanning trees. 

Now we t u r n to our t h i r d and final special case of A l g o r i t h m 4.4.1; th is 
is due t o Boruvka [Bor26a] and requires t h a t a l l edge weights are d is t inct -
T h e n we may combine several i terations of M I N T R E E into one larger step: 
we always treat each nonempty Vi and add the shortest edge leaving Vi. We 
shall give a comparatively brief description of the result ing a lgor i thm. 

A l g o r i t h m 4.4.10. Let G = (V, E ) be a connected graph w i t h V = { 1 , . . . , n } , 
and let w: E —> R be a weight funct ion for which two d is t inct edges always 
have dist inct weights. 
P r o c e d u r e B O R U V K A ( G , w; T) 

(1) for i = 1 to n do V» <— {i} od ; 
(2) T, 0: .V/ > {V. I ' , , } : 
(3) w h i l e \T\ < n - 1 do 
(4) for U £ M do 
(5) find an edge e = uv w i t h u £ U, v £ U and w(e) < w(e') 

for al l edges e' = u'v' w i t h u' £ U, v' £ TJ: 
(6) find the component U' containing v. 
(7) r ^ T U { e } ; 
(8) o d 
(9) for U £ M do M E R G E R , U') o d 

(10) o d 

T h e o r e m 4.4.11. The algorithm of Boruvka determines a minimal spanning 
tree for (G,w) in 0(\E\log |V|) steps. 

4.4 i n e aigontnms oi r r i i n , rvrusKai ana ooruvKa iu» 

Proof. I t follows from Theorem 4.4.2 t h a t the a l g o r i t h m is correct. The con
d i t i o n t h a t al l edge weights are d is t inc t guarantees t h a t no cycles are created 
d u r i n g an execution of the whi le - l o o p . As the number of connected compo
nents is at least halved in each i t e ra t i on , the whi le - l o op is executed at most 
log |V| t imes. We leave i t t o the reader to give a precise f o rmulat ion of steps 
(5) and (6J. leading t o the complexity of 0(\E\log |V|). ( H i n t : For each vertex 
v, we should or ig inal ly have a l ist Ev of the edges incident w i t h v.) • 

E x a m p l e 4 .4 .12 . Let us apply the a lgor i thm of Boruvka to the network 
shown i n Figure 4.2. W h e n the whi le - l o op is executed for the first t i m e , 
the edges { 1 , 2 } , {3 ,6} , { 4 , 5 } , { 4 , 7 } and { 7 . 8 } (drawn bo ld in Figure 4.2) 
are chosen and inserted into T. T h a t leaves only three connected components, 
which are merged dur ing the second execution of the whi le - l oop by adding 
the edges { 2 , 5 } and {1 , 3 } ( d rawn bo ld broken i n Figure 4.2). 

3 

F i g . 4 .2 . A network 

E x e r c i s e 4 .4 .13 . Show t h a t the condi t ion t h a t al l edge weights are d is t inct 
is necessary for the correctness of the a lgor i thm of Boruvka . 

E x e r c i s e 4 .4 .14. The fo l lowing table taken f rom [BoMu76] gives the dis
tances ( in un i t s of 100 miles) between the a irports of the cities London , Mexico 
City , New Y o r k , Paris, Peking and Tokyo: 

L M C N Y Pa Pe To 

L - 56 35 2 51 60 
M C 56 - 21 57 78 70 
N Y 35 21 - 36 68 68 
Pa 2 57 36 51 61 
Pe 51 78 68 51 - 13 
To 60 70 68 61 13 -



11U 4 Spanning 'Frees 

F i n d a m i n i m a l spanning tree for the corresponding graph. 

E x e r c i s e 4 .4 .15. The tree graph T(G) of a connected graph G has the span
n ing trees for G as vertices; two of these trees are adjacent i f they have |V\ — 2 
edges in common. Prove t h a t T(G) is connected. W h a t can be said abo*t the 
subgraph of m i n i m a l spanning trees (for a given weight funct ion w)l 

The complexity of the algorithms discussed i n this section can often be 
improved by using appropriate data structures. Implementat ions for the a l 
gor i thms of P r i m and Kruskal w i t h complexity 0 (|£| log |V|) are given i n 
[Joh75] and [ChTa76]. Using Fibonacci heaps, the a lgor i thm of P r i m can be 
implemented w i t h complexity 0(\E\ + \ V\ log \V\); see [ A h M 0 9 3 ] . Boruvka 's 
a lgor i thm (or appropriate variations) can likewise be implemented w i t h com
plex i ty 0(\E\ log |V|); see [Yao75] and [ChTa76]. Almost linear bounds are i n 
[FrTa87] and [GaGST86]; finally, an a lgor i thm w i t h linear complexity was dis
covered by Fredman and W i l l a r d [FrWi94] ; of course, this supposes t h a t the 
edges are already sorted according t o their weights. Unfortunate ly , the best 
theoretical a lgorithms tend to be of no pract ical interest because of the large 
size of the i m p l i c i t constants. There is a simple a lgor i thm w i t h complexity 
0(|V|) for planar graphs; see [Mat95] . 

The problem of finding a new m i n i m a l spanning tree i f we change the 
weight of an edge and know a m i n i m a l spanning tree for the or ig inal graph 
already is discussed i n [Fre85] and [Epp94]. On the average, an update may be 
done in 0 ( l o g |V|) steps (under suitable assumptions). Final ly , i t can be ver i 
fied i n linear t ime ( that is, w i t h complexity 0(|£|)) whether a given spanning 
tree is m i n i m a l . A similar result holds for the sensitivity analysis of m i n i m a l 
spanning trees; th is is the problem how much the weight of a given edge e can 
be increased w i t h o u t changing the m i n i m a l spanning tree already known. For 
the latter two problems, see [DiRT92j . 

4.5 M a x i m a l spanning trees 

For some pract ical problems, i t is necessary to consider maximal spanning 
trees: we want to determine a spanning tree whose weight is m a x i m a l among 
al l spanning trees for a given network (G.w). Obviously, a spanning tree T 
for (G.w) is max imal i f and only i f T is m i n i m a l for (G, — w). Hence we 
can find a m a x i m a l spanning tree by replacing w by — w and using one of 
the algorithms of Section 4.4. A l ternat ive ly , we could also stay w i t h w and 
jus t replace minimum by maximum i n the algorithms of P r i m , Kruska l and 
Boruvka; of course, in Kruskal 's A l g o r i t h m , we then need to order the edges 
according t o decreasing weight. 

Let us give some examples where one requires a m a x i m a l spanning tree; 
the first of these is taken from [Chr75]. 

i.o maximal spanning trees i n 

E x a m p l e 4 .5 .1 . Consider the problem of sending confidential in fo rmat ion to 
n persons. We define a graph G w i t h n vertices corresponding to the n persons; 
two vertices i and j are adjacent i f i t is possible t o send in fo rmat ion direct ly 
f rom i t o j . For each edge ij, let Pij denote the probab i l i ty t h a t the in fo rmat ion 
sent is overheard; we suppose t h a t these probabi l i t ies are independent of each 
other. Now we replace pi3 by q,j = 1 - p l J ; t h a t is, by the probab i l i ty t h a t the 
in fo rmat ion is sent w i t h o u t being overheard. I n order to send the in f o rmat i on 
to al l n persons, we are looking for a spanning subgraph of G for wh i ch the 
product of the qi0 (over the edges occurring i n the subgraph) is m a x i m a l . 
Replacing q^ by w(ij) = logq^-, we have reduced our problem to finding a 
spanning tree of max imal weight. 

P r o b l e m 4.5.2 ( n e t w o r k r e l i a b i l i t y p r o b l e m ) . Let us consider the ver
tices i n Example 4.5.1 as the nodes of a communicat ion network, and let us 
interpret as the probab i l i ty t h a t the connection between i and j fails. Then 
a m a x i m a l spanning tree is a tree which maximizes the probab i l i ty for undis
turbed communicat ion between a l l nodes of the network. This in terpre tat i on 
- and i ts a lgor i thmic solution - is already contained in [Pri57]. 

P r o b l e m 4.5.3 ( b o t t l e n e c k p r o b l e m ) . Let (G.w) be a network, where G 
is a connected graph, and let 

„ , ei eo en 

W = VQ — — U] — « - «2 . . . — 2 - Vn, 

be any p a t h . T h e n c(W) = m i n {w(ei) : i = 1 , . . . , n } is called the capacity or 
the inf-section of W. (We may t h i n k of the cross-section of a tube i n a supply 
network or the capacity of a road.) For each pair (u , v) of vertices of G, we 
want t o determine a pa th f rom u t o v w i t h m a x i m a l capacity. 

The fo l lowing theorem due t o H u [Hu61] reduces Problem 4.5.3 t o finding 
a m a x i m a l spanning tree. Thus the a lgor i thms of P r i m , K r u s k a l , and Boruvka 
- modif ied for determining m a x i m a l spanning trees - can be used to solve the 
bottleneck problem. 

T h e o r e m 4.5.4. Let (G, w) be a network on a connected graph G, and let T 
be a maximal spanning tree for G. Then, for each pair (u,v) of vertices, the 
unique path from u to v in T is a path of maximal capacity in G. 

Proof. Le t W be the pa th f rom u t o v i n T, and e some edge of W w i t h 
c(W) = c(e). Suppose there exists a p a t h W i n G having start vertex u and 
end vertex v such that c(W) > c(W). Let ST(e) be the cut of G defined 
in L e m m a 4.3.2 and E(Sr{e)) the corresponding cocycle. As u and v are in 
different connected components of T \ e, the p a t h W has to contain some 
edge / of E(ST{e)). As c(W) > c(W), we must have w(f) > w(e). B u t then 

U { / } ) \ { e } would be a tree of larger weight t h a n T. • 

E x e r c i s e 4 .5 .5 . Determine a m a x i m a l spanning tree and the m a x i m a l capac
ities for the network of Figure 4.1. 


