LUy 4 Opdllllig 11ees

By Corollary 4.2.6, det B|S # 0 if and only if the edges of G corresponding
to S form a tree; moreover, in this case, (det B|S)? = 1. This proves the
theorem. O

Theorem 4.2.7 is contained implicitly in [Kirh47]. Not surprisingly.r this
result may also be used to determine the number of spanning trees of a graph
G by considering the incidence matrix of any orientation of G. We need the
following simple lemma; then the desired result is an immediate consequence
of this lemma and Theorem 4.2.7.

Lemma 4.2.8. Let A be the adjacency matriz of a graph G and M the in-
cidence matriz of an arbitrary orientation H of G, where both matrices use

the same ordering of the vertices for numbering the rows and columns. Then
MMT = diag(deg1,...,degn) — A.

Proof. The (i, j)-entry of MM7 is the inner product of the i-th and the j-th
row of M. For i # j, this entry is —1 if ij or ji is an edge of H and 0 otherwise.
For i = j, we get the degree degi. O

Theorem 4.2.9. Let A be the adjacency matriz of a graph G and A’ the
matriz —A + diag(deg1,...,degn). Then the number of spanning trees of G

is the common value of all minors of A" which arise by deleting a row and the
corresponding column from A’ O

In Section 4.8, we will give a different proof for Theorem 4.2.9 which avoids
using the theorem of Cauchy and Binet. The matrix A’ is called the degree
matriz or the Laplacian matriz of G. As an example, let us consider the case
of complete graphs and thus give a third proof for Corollary 1.2.11.

Example 4.2.10. Theorem 4.2.9 contains a formula for the number of all
trees on n vertices; note that this formula counts the different trees. not the
isomorphism classes of trees. Obviously, the degree matrix of K, is A’ =
nl — J, where J is the matrix having all entries = 1. By Theorem 4.2.9, the
number of trees on n vertices is the determinant of a minor of A’, that is

n—-1-n-n...—-n
Siie gy 8 T e
= [&I @ n 0
-1 -1 ..nﬂ’l 1.0 0 i
| BRI N
=1n0...0
=|-10mn 0
=100...n
=nn——2

o) AVLILLLIIEGUL O PCUILALIIAE, Wi o e

The following exercise concerns a similar application of the matrix tree
theorem; see [FiSe58]. A simple direct proof can be found in [Abu90] where
this result is also used to give yet another proof for Corollary 1.2.11.

Exercise 4.2.11. Use Theorem 4.2.9 to show that the number of spanning
trees of the complete bipartite graph K,, ,, is m"~1n™~ 1,
-

Note that we can also define incidence matrices for graphs: the matrix M
has entry m;; = 1 if vertex i is incident with edge e;, and m;; = 0 otherwise.
But the statements analogous to Lemma 4.2.2 and Theorem 4.2.3 do not hold;
for example, the three columns of a cycle of length 3 are linearly independent
over Z. However, the situation changes if we consider the incidence matrix M
as a matrix over Zs.

Exercise 4.2.12. Prove the analogues of 4.2.2 through 4.2.4 for graphs, where
M is considered as a binary matrix.

The incidence matrix M of a graph — considered as a matrix over the inte-
gers — is not unimodular in general, as the following exercise shows. Moreover,
it provides a further important characterization of bipartite graphs.

Exercise 4.2.13. Let G be a graph with incidence matrix M. Show that G is
bipartite if and only if M is totally unimodular as a matrix over Z. Hint: The
proof that unimodularity of M is necessary is similar to the proof of Theorem
4.2.5. The converse can be proved indirectly.

Exercise 4.2.14. Let e be an edge of K,,. Determine the number of spanning
trees of K, \ e.

Exercise 4.2.15. Let G be a forest with n vertices and m edges. How many
connected components does G have?

Sometimes, a list of all spanning trees of a given graph is needed, or an
arbitrary choice of some spanning tree of G (a random spanning tree). These
tasks are treated in [CoDN89]; in particular, it is shown that the latter problem
can be solved with complexity O(|V|?).

4.3 Minimal spanning trees

In this section, we consider spanning forests in networks. Thus let (G, w) be
a network. For any subset T of the edge set of G, we define the weight of T
by ;
w(T) = > wle).
eeT
A spanning forest of G is called a minimal spanning forest if its weight is
minimal among all the weights of spanning forests; similarly, a minimal span-
ning tree has minimal weight among spanning trees. We restrict ourselves to

102 4 Spanning Trees

spanning trees; the general case can be treated by considering a minimal span-
ning tree for each connected component of G. Thus, we now assume G to be
connected.

Minimal spanning trees were first considered by Boruvka [Bor26a, Bor26b].
Shortly after 1920, electricity was to be supplied to the rural area of South-
ern Moravia; the problem of finding as economical a solution as possible for
the proposed network was presented to Boruvka. He found an algorithm for
constructing a minimal spanning tree and published it in the two papers cited
above. We will present his algorithm in the next section. Boruvka's papers
were overlooked for a long time; often the solution of the minimal spanning
tree problem is attributed to Kruskal and Prim [Kru56, Pri57], although both
of them quote Boruvka; see the interesting article [GrHe85] for a history of
this problem. There one also finds references to various applications reaching
from the obvious examples of constructing traffic or communication networks
to more remote ones in classification problems, automatic speech recognition,
image processing, etc.

As the orientation of edges is insignificant when looking at spanning trees,
we may assume that G is a graph. If the weight function w should be constant,
every spanning tree is minimal; then such a tree can be found with complexity
O(|E|) using a BFS, as described in Section 3.3. For the general case, we
shall give three efficient algorithms in the next section. Corollary 1.2.11 and
Exercise 4.2.11 show that the examination of all spanning trees would be a
method having non-polynomial complexity.

But first we characterize the minimal spanning trees. Let us introduce the
following notation. Consider a spanning tree T' and an edge e not contained in
T. By Lemma 4.1.1, the graph arising from T by adding e contains a unique
cycle; we denote this cycle by Cr(e). The following result is of fundamental
importance.

Theorem 4.3.1. Let (G,w) be a network, where G is a connected graph. A
spanning tree T of G is minimal if and only if the following condition holds
for each edge e in G\ T':

w(e) = w(f) for every edge f in Cr(e). (4.1)

Proof. First suppose that T is minimal. If (4.1) is not satisfied, there is an
edge e in G\ T and an edge f in Cr(e) with w(e) < w(f). Removing f from
T splits T into two connected components, since f is a bridge. Adding e to
T\ f gives a new spanning tree T'; as w(e) < w(f), T' has smaller weight
than T'. This contradicts the minimality of T

Conversely, suppose that (4.1) is satisfied. We choose some minimal span-
ning tree 7' and show w(T") = w(T"), so that T is minimal as well. We use
induction on the number k of edges in 7"\ T". The case k = 0 (that is, T = T")
is trivial. Thus let ¢ be an edge in 7' \ T. Again, we remove ¢’ from T”,
so that T splits into two connected components Vi and V;. If we add the
path Cr(e’) \ {€'} to T\ {€'}, V; and V} are connected again. Hence Cr(e’)

3 S oA A e S LA

pcess it
S S £

e
g

"

4

4.3 MIMmal Spannng urees 1uo

has to contain an edge e connecting a vertex in V) to a vertex in V,. Note
that e cannot be an edge of 1", because otherwise T" \ {e'} would still be
connected. The minimality of 7" implies w(e) > w(e’): replacing €’ by e in
T', we obtain another spanning tree 7"; and if w(e) < w(e’), this tree would
have smaller weight than 7", a contradiction. On the other hand, by condition
(4.1), wle') > w(e); hence w(e') = w(e) and w(IT") = w(T"). Thus T" is a
minimal spanning tree as well. Note that 7" has one more edge in common
with T than T’; using induction, we conclude w(7T") = w(T") = w(T"). O

Next we give another characterization of minimal spanning trees. To do
so, we need two definitions. Let G be a graph with vertex set V. A cut is a
partition S = {X, X'} of V into two nonempty subsets. We denote the set
of all edges incident with one vertex in X and one vertex in X' by E(S)
or E(X,X'); any such edge set is called a cocycle. We will require cocycles
constructed from trees: :

Lemma 4.3.2. Let G be a connected graph and T a spanning tree of G. For
each edge e of T, there is ezactly one cut St(e) of G such that e is the only
edge which T has in common with the corresponding cocycle E(St(e)).

Proof. If we remove e from T, the tree is divided into two connected compo-
nents and we get a cut St(e). Obviously, the corresponding cocycle contains
e, but no other edge of T". It is easy to see that this is the unique cut is the
with the desired property. O

Theorem 4.3.3. Let (G, w) be a network, where G is a connected graph. A
spanning tree T of G is minimal if and only if the following condition holds
for each edge e € T':

w(e) < w(f) for every edge [in E(Sr(e)). (4.2)

Proof. First let T be minimal. Suppose that there is an edge e in T and an
edge f in E(Sy(e)) with w(e) > w(f). Then, by removing e from T and
adding f instead, we could construct a spanning tree of smaller weight than
T, a contradiction.

Conversely, suppose that (4.2) is satisfied. We want to reduce the statement
to Theorem 4.3.1; thus we have to show that condition (4.1) is satisfied. Let
e be an edge in G\'T and f # e an edge in Cr(e). Consider the cocycle
E(S7(f)) defined by f. Obviously, e is contained in E(St(f)): hence (4.2)
vields w(f) < w(e). 0

Exercise 4.3.4. Let (G, w) be a network, and let v be any vertex. Prove that
every minimal spanning tree has to contain an edge incident with v which has
smallest weight among all such edges.

Exercise 4.3.5. Let (G, w) be a network, and assume that all edges have dis-
tinct weights. Show that (G.w) has a unigue minimal spanning tree [Bor26a).

14 4 dpanmng lrees

4.4 The algorithms of Prim, Kruskal and Boruvka

In this section, we will treat three popular algorithms for determining minimal
spanning trecs, all of which are based on the characterizations given in the
previous section. Let us first deal with a generic algorithm which has the
advantage of allowing a rather simple proof. The three subsequent algorithms
are special cases of this general method which is due to Prim [Pri57].

Algorithm 4.4.1. Let G = (V, E) be a connected graph with vertex set V =
{1,....,n} and w: F — R a weight function for G. The algorithm constructs
a minimal spanning tree T for (G, w).

Procedure MINTREE{G. w: T

(1)fori=1tondoV; —{i}; T; — @ od,

(2Yfork=1ton-1do

(3) choase V; with V; # &;

{4) choose an edge e = wv with u € V. v € V. and w(e) < wie’)
for all edges ¢’ = v'+/ with o' € V. o' ¢ V;

{5 determine the index § for which v € V};
(6) V, = VoV Ve 0

(7) L= TLuTu{e); T; - 0;

(8) ifk=n—1then T — T, fi;

(9) od

Theorem 4.4.2. Algorithm 4.4.1 determines a minimal spanning trec for the
network (G, w).

Proof. We use induction on t := |T3] + ...+ |T},| to prove the following claim:

For t =0....,n — 1, there exists a minimal spanning tree T (4.3)

of G containing Ty.....7T,.

For t = n — 1, this claim shows that the algorithm is correct. Clearly, (4.3)
holds at the beginning of the algorithm - before the loop (2) to (9) is executed
for the first time - since ¢+ = 0 at that point. Now suppose that {4.3) holds for
t = k—1. that is, before the loop is executed for the k-th time, Let ¢ = wt with
u € V, be the edge which is constructed in the k-th iteration. If e is contained
in the tree T satisfyving (4.3) for t = k£ — 1, there is nothing to show. Thus
we may assume e € T. Then T U {e¢} contains the unique cycle C' = Cr(e);
obviously, C' has to contain another edge f = rs with »r € V; and s ¢ V,. By
Theorem 4.3.1, wie) > w{f). On the other hand, by the choice of e in step
(4). wle) < w(f). Hence w(e) =w(f). and T" = (T U {e}}\ {f} is a minimal
spanning tree of G satisfying (4.3) for ¢ = k. !

Of course. we cannot give the precise complexity of Algorithm 4.4.1: this
depends both on the choice of the index { in step (3) and on the details of the

A

4.4 1uhe ajgorithms o1 rrin, Kruskal and sonivia

implementation. We now turn to the three special cases of Algorithm 4.4.1
mentioned above. AN of them are derived by making steps (3) and (4) in
MINTREE precise. The first algorithm was favored by Prim and is generally
known as the algorithm of Prim, although it was already given by Jarnfk
[Jar30}.

Algorithri 4.4.3. Let G be a connected graph with vertexset V = {1....,n}
given by adjacency lists A, and let w: E — R be a weight function for G.

Procedure PRIM(G.w: T)
(1) g(1) <= 0. 50, T« @

(2) for i = 2 to n do g(i) « oc od;
(3) while § # V do

(4) choose ¢ € 1\ § such that g{7) is minimal, and set § — S U {i};
(3) ifi #1 then 7 — T'U{e(}} fi;

(6) forje A,N(V\S) do

(7) if g{v) > w(ij) then g(v) + w{ij) and e(v) — ij fi

(8) od

{9) od

Theorem 4.4.4. Aigorithm {.4.9 determines with complezity OV |*) a min-
imal spanning tree T Jor the network (G, w).

Proof. It is easy to see that Algorithm 4.4.3 is a special case of Algorithm 4.4.1
(written a bit differently): if we always choose Vi in step (3) of MINTREE,
we get the algorithm of Prim. The function g(7) introduced here is just used
to simplify finding the shortest edge leaving V; = 5. Hence the algorithm is
correct by Theorem 4.4.2: it remains to discuss its complexity. The while-loop
is executed V- times. During each of these iterations. the comparisons in step
(4) can be done in at most |V| — |S| steps, so that we get a complexity of
O(|V|?). As G is simple. this is also the overall complexity: in step (6), each
edge of (¢ is examined exactly twice. g

Example 4.4.5. Let us apply Algorithm 4.4.3 to the undirected version of
the network of Figure 3.5. where we label the edges as follows: ¢; = {1.3},
€2 = {6.8), e3 = {1,3}, 5 = {4.5}. €5 = {4.8}, g = {7.8}, 7 = {6,7},
ey = {4,7}, g = {'2.5}, elp = {2,4}, ey = {2,6}., €12 = {36} €13 = {5,6},
€1y = {3,8}, e;s = {1,2}. Thus the edges are ordered according to their
weight. We do not need really this ordering for the algorithm of Prim. but
will use it later for the algorithm of Kruskal. The algorithm of Prim then
proceeds as follows: the resulting minimal spanning tree is indicated by the
bold edges in Figure 4.1.

1Yo 4 opanning 1lrees

10

Fig. 4.1. A network

Heration 134 =1, 8= {1}, T =0, g(2)= 28, e(2) ==, 5{08) =1,
e(5)=e1,9(3)=2,e(3) =¢e3

Iteration 2:1=135, S ={1,5}, T = {e1 }, g(2) = 8, e(2) = eg, g(4) = 5,
6{4) = €4, 9(6) = 26* 6(6) =33

Iteration 3:1 =3, S = {1,5,3}, T = {e1,e3}, g(6) = 24, e(6) = e12,
9(8) =27, e(8) = e14

Iteration 4:i =4, § ={1,5,3,4}, T = {e1,e3,es}, g(7) = 8, e(7) = es,
9(8)=17,¢€(8) =es5

Iteration 5.1 =8, § = {1,5,3,4,8}, T = {e1,e3,es,e5}, g(6) =1,
e(B) = ez, g(7) =17, e(T) = ez

Iteration 6: i =6, S ={1,5,3,4,8,6}, T = {e1,€3,€4,€5,€2}

Tteration 7.1 = 7= S = {1,5,3,4,8,6, 7}' T= {61183:64165182586}

Iteration 8:i=2, § = {1,5,3,4,8,6,7,2}, T = {e1, €3, €4, €5,€2, €5, €9}

Now we turn to the second special case of Algorithm 4.4.1; this is due to
Kruskal [Kru56]. We first give a somewhat vague version.

Algorithm 4.4.6. Let G = (V, E) be a connected graph with V' = {1,...,n},
and let w: E — R be a weight function. The edges of G are ordered according
to their weight, that is, E = {e;,..., em} with w(e;) < ... £ wlen).

Procedure KRUSKAL(G, w;T)

(1) T 0

(2) for k =1 to m do

(3) if e) does not form a cycle together with some edges of T
then append e, to T fi 3

(4) od

4
4
|

4.4 11e algontiims ol Irim, Aruskal alld DOIuvha LU

Note that the algorithm of Kruskal is the special case of MINTREE where
V; and e are chosen in such a way that w(e) is minimal among all edges which
are still available: that is, among all those edges which do not have both
end vertices in one of the sets V; and would therefore create a cycle. Again.
Theorem 4.4.2 shows that the algorithm is correct. Alternatively, we could
also appea] to Theorem 4.3.1 here: in step (3), we choose the edge which does
not create a cycle with the edges already in the forest and which has minimal
weight among all edges with this property. Thus the set T of edges constructed
satisfies (4.1), proving again that T is a minimal spanning tree.

Let us consider the complexity of Algorithm 4.4.6. In order to arrange the
edges according to their weight and to remove the edge of smallest weight,
we use the data structure priority queue already described in Section 3.6.
Then these operations can be performed in O(|E|log|E|) steps. It is more
difficult to estimate the complexity of step (3) of the algorithm: how do we
check whether an edge creates a cycle, and how many steps does this take?
Here it helps to view the algorithm as a special case of Algorithm 4.4.1. In
step (1), we begin with a (totally) disconnected forest T' on n = [V/| vertices
which consists of n trees without any edges. During each iteration, an edge
is added to the forest T if and only if its two end vertices are contained in
different connected components of the forest constructed so far; these two
connected components are then joined by adding the edge to the forest 7.
Therefore we may check for possible cycles by keeping a list of the connected
components; for this task, we need a data structure appropriate for treating
partitions. In particular, operations like disjoint unions (MERGE) and finding
the component containing a given element should be easy to perform. Using
such a data structure, we can write down the following more precise version
of Algorithm 4.4.6.

Algorithm 4.4.7. Let G = (V, E) be a connected graph with V' = {1,...,n},
and let w: E — R be a weight function on G. We assume that E is given as
a list of edges.

Procedure KRUSKAL (G, w; T)

()T 9

(2)for i =1tondoV; « {i} od;

(3) put E into a priority queue Q with priority function w;

(4) while Q # 0 do

(5) e := DELETEMIN(Q);

(6) find the end vertices v and v of e;

(7) find the components V,, and V, containing u and v, respectively;
ES% if Vi, # V,, then MERGE(V,,,V,); T — T U {e} i

9) od

Now it is easy to determine the complexity of the iteration. Finding and
removing the minimal edge e in the priority queue takes O(log|E|) steps.

1Us 4 opannng irees

Successively merging the original n trivial components and finding the com-
ponents in step (7) can be done with a total effort of O(nlogn) steps; see
[AhHU83] or [CoLR90]. As G is connected, G has at least n — 1 edges, so that
the overall complexity is O(|E|log|E|). We have established the following
result. 7

Theorem 4.4.8. The algorithm of Kruskal (as given in 4.4.7) determines
with complexity O(|E|log|E|) a minimal spanning tree for (G, w). 0

For sparse graphs, this complexity is much better than the complexity of
the algorithm of Prim. In practice, the algorithm of Kruskal often contains one
further step: after each merging of components, it is checked whether there is
only one component left; in this case, T is already a tree and we may stop the
algorithm.

Example 4.4.9. Let us apply the algorithm of Kruskal to the network of
Figure 4.1. The edges €1, €2, €3, €4, €5, eg and eg are chosen successively, so that
we obtain the same spanning tree as with the algorithm of Prim (although
there the edges were chosen in a different order). This has to happen here, since
our small example has only one minimal spanning tree. In general, however,
the algorithms of Prim and Kruskal will yield different minimal spanning trees.

Now we turn to our third and final special case of Algorithm 4.4.1; this
is due to Boruvka [Bor26a] and requires that all edge weights are distinct.
Then we may combine several iterations of MINTREE into one larger step:
we always treat each nonempty V; and add the shortest edge leaving V;. We
shall give a comparatively brief description of the resulting algorithm.

Algorithm 4.4.10. Let G = (V, E) be a connected graph with V. = {1,...,n},
and let w: F — R be a weight function for which two distinct edges always
have distinct weights.

Procedure BORUVKA (G, w; T)

(1) for i = 1 to n do V; — {i} od;
()T —0; M — {V,,....V,, };

(3) while [T| <n—1do
(4) for U e M do

(5) find an edge e = uv with u € U, v ¢ U and w(e) < w(e’)
for all edges € = u'v’ withu' € U, v' ¢ U;
(6) find the component U’ containing v;
(7) T —TU{e};
(8) od
(9) for U € M do MERGE(U,U") od
(10) od

Theorem 4.4.11. The algorithm of Boruvl_ca determines a minimal spanning
tree for (G, w) in O(|E|log|V]) steps.

H
4
|

=

4.4 1HE algUlIuilis O I, A Ushal alltd DOLUV ka 1UJ

Proof. It follows from Theorem 4.4.2 that the algorithm is correct. The con-
dition that all edge weights are distinct guarantees that no cycles are created
during an execution of the while-loop. As the number of connected compo-

‘nents is at least halved in each iteration, the while-loop is executed at most

log |V| times. We leave it to the reader to give a precise formulation of steps

(5) and (6) leading to the complexity of O(|E|log V). (Hint: For each vertex

v, we should originally have a list E, of the edges incident with v.) O

Example 4.4.12. Let us apply the algorithm of Boruvka to the network
shown in Figure 4.2. When the while-loop is executed for the first time,
the edges {1,2}, {3,6}, {4.5}, {4,7} and {7,8} (drawn bold in Figure 4.2)
are chosen and inserted into T'. That leaves only three connected components,
which are merged during the second execution of the while-loop by adding
the edges {2,5} and {1,3} (drawn bold broken in Figure 4.2).

Fig. 4.2. A network

Exercise 4.4.13. Show that the condition that all edge weights are distinct
is necessary for the correctness of the algorithm of Boruvka.

Exercise 4.4.14. The following table taken from [BoMu76] gives the dis-
tances (in units of 100 miles) between the airports of the cities London, Mexico
City, New York, Paris, Peking and Tokyo:

L MC NY Pa Pe To

L.~ 66 35 2 81 €0
MC 56 = L BT 38 W0
i T - 36 68 68

Fa, 2 5% 86 =081 T8l
Pe 51 78 68 &1 — 13

To o6Y T 68 6] 13 =

Iy 41 Spanning lrees
Find a minimal spanning tree for the corresponding graph.

Exercise 4.4.15. The iree groph T{() of a connected graph ¢ has the span-
ning trees for G as vertices; two of these trees are adjacent if they have |V] -2
edges in common. Prove that T(G) is connected. What can be said abogt the
subgraph of minimal spanning trees (for a given weight function w)?

The complexity of the algorithms discussed in this section can often be

improved by using appropriate data structures. Implementations for the al-
gorithms of Prim and Kruskal with complexity O(|E|log|V|) are given in
[Joh75] and {ChTa76]. Using Fibonacei heaps, the algorithm of Prim can be
implemented with complexity O(JE! + |V logiV]); see [AhMO93]. Doruvka's
algorithm (or appropriate variations) can likewise be implemented with com-
plexity O(|E|log |V|): see [Yao75] and [ChTa76]. Almost lincar bounds are in
[FrTa87) and {GaGST86! finally, an algorithm with linear complexity was dis-
covered by Fredman and Willard [FrWwid4]; of course, this supposes that the
edges are already sorted according to their weights. Unfortunately, the best
theoretical algorithms tend to be of no practical interest because of the large
size of the implicit constants. There is a simple algorithm with complexity
O(|V}) for planar graphs; see [Mat95:,
" The problem of finding a new minimal spanning tree if we change the
weight of an edge and know a minimal spanning tree for the original graph
already is discussed in [Fre85] and (Epp94]. On the average, an update may be
done in O(log |V]) steps (under suitable assumptions}. Finally, it can be veri-
fied in linear time (that is, with complexity G(|£[)}) whether a given spanning
tree is minimal. A similar result holds for the semsitivity analysis of minimal
spanning trees; this is the problem how much the weight of a given edge € can
be increased without changing the minimal spanning tree already known. For
the latter two problems, see [DIRT92].

4.5 Maximal spanning trees

Tor some practical problems, it is necessary to consider maximal spanning
trees: we want to determine a spanning tree whose weight is maximal among
all spanning trees for a given network (G, w). Obviously. & spauning tree T
for (G.w) is maximal if and only if T is minimal for (G, —w). Hence we
can find a maximal spanning trée by replacing w by —w and using one of
the algorithuns of Section 4.1. Alternatively, we could also stay with w and
just replace mindmum by mazimum in the algorithms of Prim. Kruskal and
Boruvka: of course, in Kruskal's Algorithm, we then need to order the edges
according to decreasing weight.

Let us give some examples where one requires a maximal spanning tree;

-1

the first of these is taken from [Chr75].

TRk ST

4.0 IviaXxial SpAalniig wrees 111

Example 4.5.1. Consider the problem of sending coufidential information to
n persons. We define a graph G with n vertices corresponding to the n persons;
two vertices ¢ and j are adjacent if it is possible to send information directly
from i to j. For each edge ij, let p;; denote the probability that the information
sent is overheard; we suppose that these probabilities are independent of each
other. Now we replace p;; by ¢i; = 1 — py;, that is, by the probability that the
information is sent without being overheard. In order to send the information
to all n persons, we are looking for a spanning subgraph of & for which the
product of the ¢;; {over the edpes vccurring in che subgraph) is maximal.
Replacing ¢;; by w(ij) = logg:;. we have reduced our problem to finding a
spanuing tree of maximal weight.

Problem 4.5.2 (network reliability problem). Let us consider the ver- -
tices in Example 4.5.1 as the nodes of a communication network. and let us
interpret p;; as the probability that the connection between ¢ and j fails. Then
a maximal spanning tree is a tree which maximizes the probability for undis-
turbed communication between all nodes of the network. This interpretation
~ and its algorithmic solution - is already contained in [Pri57]. '

Problem 4.5.3 (bottleneck problem). Let (G, w) be a network. where G .
is a connected graph, and let '

£y

- €1
W =1 — 1u g ... Un,

be any puth. Then ¢(W) = min {w(e;) :i = 1,...,n} is called the capacity or
the énf-section of W. (We may think of the cross-section of a tube in a supply
network or the capacity of a road.) For each pair (w. v) of vertices of G, we
want to determine a path from u to v with inaximal capacity.

The following theorem duc to Hu [Hu61] reduces Problem 4.5.3 to finding
a maximal spanning tree. Thus the algorithms of Prim, Kruskal. and Boruvka
- modified for determining maximal spanning trees - can be used to solve the
bottleneck problem.

Theorem 4.5.4. Let (G, w) be a network on a connected graph G, and let T
be a mazrimal spanning tree for G. Then, for each pair (u,v) of vertices, the
unique path from u to v in T is a path of mazimal capacity in G,

Proof. Let W be the path from v to v in 7. and e some edge of W with
c(W) = ¢(e). Suppose there exists a path W’ in G having start vertex u and
end vertex v such that o(W’') > o(W). Let Sr(e) be the cut of G defined
In Lemma 4.3.2 and E(S7(e)) the corresponding cocycle. As u and v are in
different connected components of T \ e. the path W’ has to contain some
edge f of E(S7(e)). As o(W') > ¢(W). we must have w{f) > w(e). But then
(TU{F})\ {e} would be a tree of larger weight than T. 0

Exercise 4.5.5. Determine a maximal spanning tree and the maximal capac-
Ities for the network of Figure 4.1.

