
23 Minimum Spanning Trees

Electronic circuit designs often need to make the pins of several components elec-
trically equivalent by wiring them together. To interconnect a set of n pins, we can
use an arrangement of n ! 1 wires, each connecting two pins. Of all such arrange-
ments, the one that uses the least amount of wire is usually the most desirable.

We can model this wiring problem with a connected, undirected graph G D
.V; E/, where V is the set of pins, E is the set of possible interconnections between
pairs of pins, and for each edge .u; !/ 2 E, we have a weight w.u; !/ specifying
the cost (amount of wire needed) to connect u and !. We then wish to find an
acyclic subset T " E that connects all of the vertices and whose total weight
w.T / D

X

.u;!/2T

w.u; !/

is minimized. Since T is acyclic and connects all of the vertices, it must form a tree,
which we call a spanning tree since it “spans” the graph G. We call the problem of
determining the tree T the minimum-spanning-tree problem.1 Figure 23.1 shows
an example of a connected graph and a minimum spanning tree.

In this chapter, we shall examine two algorithms for solving the minimum-
spanning-tree problem: Kruskal’s algorithm and Prim’s algorithm. We can easily
make each of them run in time O.E lg V / using ordinary binary heaps. By using
Fibonacci heaps, Prim’s algorithm runs in time O.E C V lg V /, which improves
over the binary-heap implementation if jV j is much smaller than jEj.

The two algorithms are greedy algorithms, as described in Chapter 16. Each
step of a greedy algorithm must make one of several possible choices. The greedy
strategy advocates making the choice that is the best at the moment. Such a strat-
egy does not generally guarantee that it will always find globally optimal solutions

1The phrase “minimum spanning tree” is a shortened form of the phrase “minimum-weight spanning
tree.” We are not, for example, minimizing the number of edges in T , since all spanning trees have
exactly jV j ! 1 edges by Theorem B.2.

23.1 Growing a minimum spanning tree 625

b

a

h

c

g

i

d

f

e

4

8
11

8 7
9

10
144

21

2
7 6

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge .b; c/ and replacing it with the edge .a; h/
yields another spanning tree with weight 37.

to problems. For the minimum-spanning-tree problem, however, we can prove that
certain greedy strategies do yield a spanning tree with minimum weight. Although
you can read this chapter independently of Chapter 16, the greedy methods pre-
sented here are a classic application of the theoretical notions introduced there.

Section 23.1 introduces a “generic” minimum-spanning-tree method that grows
a spanning tree by adding one edge at a time. Section 23.2 gives two algorithms
that implement the generic method. The first algorithm, due to Kruskal, is similar
to the connected-components algorithm from Section 21.1. The second, due to
Prim, resembles Dijkstra’s shortest-paths algorithm (Section 24.3).

Because a tree is a type of graph, in order to be precise we must define a tree in
terms of not just its edges, but its vertices as well. Although this chapter focuses
on trees in terms of their edges, we shall operate with the understanding that the
vertices of a tree T are those that some edge of T is incident on.

23.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph G D .V; E/ with a weight
function w W E ! R, and we wish to find a minimum spanning tree for G. The
two algorithms we consider in this chapter use a greedy approach to the problem,
although they differ in how they apply this approach.

This greedy strategy is captured by the following generic method, which grows
the minimum spanning tree one edge at a time. The generic method manages a set
of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge .u; !/ that we can add to A without violating
this invariant, in the sense that A[f.u; !/g is also a subset of a minimum spanning

626 Chapter 23 Minimum Spanning Trees

tree. We call such an edge a safe edge for A, since we can add it safely to A while
maintaining the invariant.

GENERIC-MST.G; w/

1 A D ;
2 while A does not form a spanning tree
3 find an edge .u; !/ that is safe for A
4 A D A [f.u; !/g
5 return A

We use the loop invariant as follows:
Initialization: After line 1, the set A trivially satisfies the loop invariant.
Maintenance: The loop in lines 2–4 maintains the invariant by adding only safe

edges.
Termination: All edges added to A are in a minimum spanning tree, and so the

set A returned in line 5 must be a minimum spanning tree.
The tricky part is, of course, finding a safe edge in line 3. One must exist, since

when line 3 is executed, the invariant dictates that there is a spanning tree T such
that A " T . Within the while loop body, A must be a proper subset of T , and
therefore there must be an edge .u; !/ 2 T such that .u; !/ 62 A and .u; !/ is safe
for A.

In the remainder of this section, we provide a rule (Theorem 23.1) for recogniz-
ing safe edges. The next section describes two algorithms that use this rule to find
safe edges efficiently.

We first need some definitions. A cut .S; V ! S/ of an undirected graph G D
.V; E/ is a partition of V . Figure 23.2 illustrates this notion. We say that an edge
.u; !/ 2 E crosses the cut .S; V ! S/ if one of its endpoints is in S and the other
is in V ! S . We say that a cut respects a set A of edges if no edge in A crosses the
cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge
crossing the cut. Note that there can be more than one light edge crossing a cut in
the case of ties. More generally, we say that an edge is a light edge satisfying a
given property if its weight is the minimum of any edge satisfying the property.

Our rule for recognizing safe edges is given by the following theorem.

Theorem 23.1
Let G D .V; E/ be a connected, undirected graph with a real-valued weight func-
tion w defined on E. Let A be a subset of E that is included in some minimum
spanning tree for G, let .S; V ! S/ be any cut of G that respects A, and let .u; !/
be a light edge crossing .S; V ! S/. Then, edge .u; !/ is safe for A.

23.1 Growing a minimum spanning tree 627

b

a

h

c

g

i

d

f

e

4

8
11

8 7
9

10
144

21

2
7 6

a

b

d

e

h

i

g

c

f

8

11

8
7

14
10

4

6

7

4

9

2

1

2

S
(a) (b)

V – S

S
V – S

S
V – S

Figure 23.2 Two ways of viewing a cut .S; V ! S/ of the graph from Figure 23.1. (a) Black
vertices are in the set S , and white vertices are in V ! S . The edges crossing the cut are those
connecting white vertices with black vertices. The edge .d; c/ is the unique light edge crossing the
cut. A subset A of the edges is shaded; note that the cut .S; V ! S/ respects A, since no edge of A
crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the
set V ! S on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the
right.

Proof Let T be a minimum spanning tree that includes A, and assume that T
does not contain the light edge .u; !/, since if it does, we are done. We shall
construct another minimum spanning tree T 0 that includes A [f.u; !/g by using a
cut-and-paste technique, thereby showing that .u; !/ is a safe edge for A.

The edge .u; !/ forms a cycle with the edges on the simple path p from u
to ! in T , as Figure 23.3 illustrates. Since u and ! are on opposite sides of the
cut .S; V ! S/, at least one edge in T lies on the simple path p and also crosses
the cut. Let .x; y/ be any such edge. The edge .x; y/ is not in A, because the cut
respects A. Since .x; y/ is on the unique simple path from u to ! in T , remov-
ing .x; y/ breaks T into two components. Adding .u; !/ reconnects them to form
a new spanning tree T 0 D T ! f.x; y/g [f.u; !/g.

We next show that T 0 is a minimum spanning tree. Since .u; !/ is a light edge
crossing .S; V !S/ and .x; y/ also crosses this cut, w.u; !/ # w.x; y/. Therefore,
w.T 0/ D w.T / ! w.x; y/Cw.u; !/

w.T / :

628 Chapter 23 Minimum Spanning Trees

y

v

u

x

p

Figure 23.3 The proof of Theorem 23.1. Black vertices are in S , and white vertices are in V ! S .
The edges in the minimum spanning tree T are shown, but the edges in the graph G are not. The
edges in A are shaded, and .u; !/ is a light edge crossing the cut .S; V ! S/. The edge .x; y/ is
an edge on the unique simple path p from u to ! in T . To form a minimum spanning tree T 0 that
contains .u; !/, remove the edge .x; y/ from T and add the edge .u; !/.

But T is a minimum spanning tree, so that w.T / # w.T 0/; thus, T 0 must be a
minimum spanning tree also.

It remains to show that .u; !/ is actually a safe edge for A. We have A " T 0,
since A " T and .x; y/ 62 A; thus, A [f.u; !/g " T 0. Consequently, since T 0 is a
minimum spanning tree, .u; !/ is safe for A.

Theorem 23.1 gives us a better understanding of the workings of the GENERIC-
MST method on a connected graph G D .V; E/. As the method proceeds, the
set A is always acyclic; otherwise, a minimum spanning tree including A would
contain a cycle, which is a contradiction. At any point in the execution, the graph
GA D .V; A/ is a forest, and each of the connected components of GA is a tree.
(Some of the trees may contain just one vertex, as is the case, for example, when
the method begins: A is empty and the forest contains jV j trees, one for each
vertex.) Moreover, any safe edge .u; !/ for A connects distinct components of GA,
since A [f.u; !/g must be acyclic.

The while loop in lines 2–4 of GENERIC-MST executes jV j ! 1 times because
it finds one of the jV j ! 1 edges of a minimum spanning tree in each iteration.
Initially, when A D ;, there are jV j trees in GA, and each iteration reduces that
number by 1. When the forest contains only a single tree, the method terminates.

The two algorithms in Section 23.2 use the following corollary to Theorem 23.1.

23.1 Growing a minimum spanning tree 629

Corollary 23.2
Let G D .V; E/ be a connected, undirected graph with a real-valued weight func-
tion w defined on E. Let A be a subset of E that is included in some minimum
spanning tree for G, and let C D .VC ; EC / be a connected component (tree) in the
forest GA D .V; A/. If .u; !/ is a light edge connecting C to some other component
in GA, then .u; !/ is safe for A.

Proof The cut .VC ; V ! VC / respects A, and .u; !/ is a light edge for this cut.
Therefore, .u; !/ is safe for A.

Exercises
23.1-1
Let .u; !/ be a minimum-weight edge in a connected graph G. Show that .u; !/
belongs to some minimum spanning tree of G.
23.1-2
Professor Sabatier conjectures the following converse of Theorem 23.1. Let G D
.V; E/ be a connected, undirected graph with a real-valued weight function w de-
fined on E. Let A be a subset of E that is included in some minimum spanning
tree for G, let .S; V ! S/ be any cut of G that respects A, and let .u; !/ be a safe
edge for A crossing .S; V ! S/. Then, .u; !/ is a light edge for the cut. Show that
the professor’s conjecture is incorrect by giving a counterexample.
23.1-3
Show that if an edge .u; !/ is contained in some minimum spanning tree, then it is
a light edge crossing some cut of the graph.
23.1-4
Give a simple example of a connected graph such that the set of edges f.u; !/ W
there exists a cut .S; V ! S/ such that .u; !/ is a light edge crossing .S; V ! S/g
does not form a minimum spanning tree.
23.1-5
Let e be a maximum-weight edge on some cycle of connected graph G D .V; E/.
Prove that there is a minimum spanning tree of G0 D .V; E ! feg/ that is also a
minimum spanning tree of G. That is, there is a minimum spanning tree of G that
does not include e.

630 Chapter 23 Minimum Spanning Trees

23.1-6
Show that a graph has a unique minimum spanning tree if, for every cut of the
graph, there is a unique light edge crossing the cut. Show that the converse is not
true by giving a counterexample.
23.1-7
Argue that if all edge weights of a graph are positive, then any subset of edges that
connects all vertices and has minimum total weight must be a tree. Give an example
to show that the same conclusion does not follow if we allow some weights to be
nonpositive.
23.1-8
Let T be a minimum spanning tree of a graph G, and let L be the sorted list of the
edge weights of T . Show that for any other minimum spanning tree T 0 of G, the
list L is also the sorted list of edge weights of T 0.
23.1-9
Let T be a minimum spanning tree of a graph G D .V; E/, and let V 0 be a subset
of V . Let T 0 be the subgraph of T induced by V 0, and let G0 be the subgraph of G
induced by V 0. Show that if T 0 is connected, then T 0 is a minimum spanning tree
of G0.
23.1-10
Given a graph G and a minimum spanning tree T , suppose that we decrease the
weight of one of the edges in T . Show that T is still a minimum spanning tree
for G. More formally, let T be a minimum spanning tree for G with edge weights
given by weight function w. Choose one edge .x; y/ 2 T and a positive number k,
and define the weight function w0 by

w0.u; !/ D

(
w.u; !/ if .u; !/ ¤ .x; y/ ;

w.x; y/ ! k if .u; !/ D .x; y/ :

Show that T is a minimum spanning tree for G with edge weights given by w0.
23.1-11 ?
Given a graph G and a minimum spanning tree T , suppose that we decrease the
weight of one of the edges not in T . Give an algorithm for finding the minimum
spanning tree in the modified graph.

23.2 The algorithms of Kruskal and Prim 631

23.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section elaborate on
the generic method. They each use a specific rule to determine a safe edge in line 3
of GENERIC-MST. In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph. The safe edge added to A is always a least-weight
edge in the graph that connects two distinct components. In Prim’s algorithm, the
set A forms a single tree. The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

Kruskal’s algorithm
Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all
the edges that connect any two trees in the forest, an edge .u; !/ of least weight.
Let C1 and C2 denote the two trees that are connected by .u; !/. Since .u; !/ must
be a light edge connecting C1 to some other tree, Corollary 23.2 implies that .u; !/
is a safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because
at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to compute
connected components from Section 21.1. It uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the vertices in one tree
of the current forest. The operation FIND-SET.u/ returns a representative element
from the set that contains u. Thus, we can determine whether two vertices u and !
belong to the same tree by testing whether FIND-SET.u/ equals FIND-SET.!/. To
combine trees, Kruskal’s algorithm calls the UNION procedure.

MST-KRUSKAL.G; w/

1 A D ;
2 for each vertex ! 2 G:V
3 MAKE-SET.!/
4 sort the edges of G:E into nondecreasing order by weight w
5 for each edge .u; !/ 2 G:E, taken in nondecreasing order by weight
6 if FIND-SET.u/ ¤ FIND-SET.!/
7 A D A [f.u; !/g
8 UNION.u; !/
9 return A

Figure 23.4 shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A
to the empty set and create jV j trees, one containing each vertex. The for loop in
lines 5–8 examines edges in order of weight, from lowest to highest. The loop

632 Chapter 23 Minimum Spanning Trees

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

2
7 6

(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; !/, whether the endpoints u and ! belong to the same
tree. If they do, then the edge .u; !/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; !/ to A, and line 8 merges the vertices
in the two trees.

23.2 The algorithms of Kruskal and Prim 633

(i) (j)

(k) (l)

(n)(m)

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
22

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

2

2

Figure 23.4, continued Further steps in the execution of Kruskal’s algorithm.

The running time of Kruskal’s algorithm for a graph G D .V; E/ depends
on how we implement the disjoint-set data structure. We assume that we use
the disjoint-set-forest implementation of Section 21.3 with the union-by-rank and
path-compression heuristics, since it is the asymptotically fastest implementation
known. Initializing the set A in line 1 takes O.1/ time, and the time to sort the
edges in line 4 is O.E lg E/. (We will account for the cost of the jV j MAKE-SET
operations in the for loop of lines 2–3 in a moment.) The for loop of lines 5–8
performs O.E/ FIND-SET and UNION operations on the disjoint-set forest. Along
with the jV j MAKE-SET operations, these take a total of O..V CE/ ˛.V // time,
where ˛ is the very slowly growing function defined in Section 21.4. Because we
assume that G is connected, we have jEj $ jV j ! 1, and so the disjoint-set opera-
tions take O.E˛.V // time. Moreover, since ˛.jV j/ D O.lg V / D O.lg E/, the to-
tal running time of Kruskal’s algorithm is O.E lg E/. Observing that jEj < jV j2,
we have lg jEj D O.lg V /, and so we can restate the running time of Kruskal’s
algorithm as O.E lg V /.

634 Chapter 23 Minimum Spanning Trees

Prim’s algorithm
Like Kruskal’s algorithm, Prim’s algorithm is a special case of the generic min-
imum-spanning-tree method from Section 23.1. Prim’s algorithm operates much
like Dijkstra’s algorithm for finding shortest paths in a graph, which we shall see in
Section 24.3. Prim’s algorithm has the property that the edges in the set A always
form a single tree. As Figure 23.5 shows, the tree starts from an arbitrary root
vertex r and grows until the tree spans all the vertices in V . Each step adds to the
tree A a light edge that connects A to an isolated vertex—one on which no edge
of A is incident. By Corollary 23.2, this rule adds only edges that are safe for A;
therefore, when the algorithm terminates, the edges in A form a minimum spanning
tree. This strategy qualifies as greedy since at each step it adds to the tree an edge
that contributes the minimum amount possible to the tree’s weight.

In order to implement Prim’s algorithm efficiently, we need a fast way to select
a new edge to add to the tree formed by the edges in A. In the pseudocode below,
the connected graph G and the root r of the minimum spanning tree to be grown
are inputs to the algorithm. During execution of the algorithm, all vertices that
are not in the tree reside in a min-priority queue Q based on a key attribute. For
each vertex !, the attribute !:key is the minimum weight of any edge connecting !
to a vertex in the tree; by convention, !:key D 1 if there is no such edge. The
attribute !:" names the parent of ! in the tree. The algorithm implicitly maintains
the set A from GENERIC-MST as
A D f.!; !:"/ W ! 2 V ! frg ! Qg :

When the algorithm terminates, the min-priority queue Q is empty; the minimum
spanning tree A for G is thus
A D f.!; !:"/ W ! 2 V ! frgg :

MST-PRIM.G; w; r/

1 for each u 2 G:V
2 u:key D 1
3 u:" D NIL
4 r:key D 0
5 Q D G:V
6 whileQ ¤ ;
7 u D EXTRACT-MIN.Q/
8 for each ! 2 G:AdjŒu#
9 if ! 2 Q and w.u; !/ < !:key

10 !:" D u
11 !:key D w.u; !/

23.2 The algorithms of Kruskal and Prim 635

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

2
7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

2
7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

2
7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

b

a

h

c

g

i

d

f

e

4

8

11

8 7
9

10
144

21

7 6
2

Figure 23.5 The execution of Prim’s algorithm on the graph from Figure 23.1. The root vertex
is a. Shaded edges are in the tree being grown, and black vertices are in the tree. At each step of
the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing the cut
is added to the tree. In the second step, for example, the algorithm has a choice of adding either
edge .b; c/ or edge .a; h/ to the tree since both are light edges crossing the cut.

636 Chapter 23 Minimum Spanning Trees

Figure 23.5 shows how Prim’s algorithm works. Lines 1–5 set the key of each
vertex to 1 (except for the root r , whose key is set to 0 so that it will be the
first vertex processed), set the parent of each vertex to NIL, and initialize the min-
priority queue Q to contain all the vertices. The algorithm maintains the following
three-part loop invariant:

Prior to each iteration of the while loop of lines 6–11,
1. A D f.!; !:"/ W ! 2 V ! frg ! Qg.
2. The vertices already placed into the minimum spanning tree are those in

V ! Q.
3. For all vertices ! 2 Q, if !:" ¤ NIL, then !:key < 1 and !:key is

the weight of a light edge .!; !:"/ connecting ! to some vertex already
placed into the minimum spanning tree.

Line 7 identifies a vertex u 2 Q incident on a light edge that crosses the cut
.V ! Q; Q/ (with the exception of the first iteration, in which u D r due to line 4).
Removing u from the set Q adds it to the set V ! Q of vertices in the tree, thus
adding .u; u:"/ to A. The for loop of lines 8–11 updates the key and " attributes
of every vertex ! adjacent to u but not in the tree, thereby maintaining the third
part of the loop invariant.

The running time of Prim’s algorithm depends on how we implement the min-
priority queue Q. If we implement Q as a binary min-heap (see Chapter 6), we
can use the BUILD-MIN-HEAP procedure to perform lines 1–5 in O.V / time. The
body of the while loop executes jV j times, and since each EXTRACT-MIN opera-
tion takes O.lg V / time, the total time for all calls to EXTRACT-MIN is O.V lg V /.
The for loop in lines 8–11 executes O.E/ times altogether, since the sum of the
lengths of all adjacency lists is 2 jEj. Within the for loop, we can implement the
test for membership in Q in line 9 in constant time by keeping a bit for each vertex
that tells whether or not it is in Q, and updating the bit when the vertex is removed
from Q. The assignment in line 11 involves an implicit DECREASE-KEY opera-
tion on the min-heap, which a binary min-heap supports in O.lg V / time. Thus,
the total time for Prim’s algorithm is O.V lg V C E lg V / D O.E lg V /, which is
asymptotically the same as for our implementation of Kruskal’s algorithm.

We can improve the asymptotic running time of Prim’s algorithm by using Fi-
bonacci heaps. Chapter 19 shows that if a Fibonacci heap holds jV j elements, an
EXTRACT-MIN operation takes O.lg V / amortized time and a DECREASE-KEY
operation (to implement line 11) takes O.1/ amortized time. Therefore, if we use a
Fibonacci heap to implement the min-priority queue Q, the running time of Prim’s
algorithm improves to O.E C V lg V /.

