
35.3 The set-covering problem 1117

35.2-3
Consider the following closest-point heuristic for building an approximate trav-
eling-salesman tour whose cost function satisfies the triangle inequality. Begin
with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step,
identify the vertex u that is not on the cycle but whose distance to any vertex on the
cycle is minimum. Suppose that the vertex on the cycle that is nearest u is vertex !.
Extend the cycle to include u by inserting u just after !. Repeat until all vertices
are on the cycle. Prove that this heuristic returns a tour whose total cost is not more
than twice the cost of an optimal tour.
35.2-4
In the bottleneck traveling-salesman problem, we wish to find the hamiltonian cy-
cle that minimizes the cost of the most costly edge in the cycle. Assuming that the
cost function satisfies the triangle inequality, show that there exists a polynomial-
time approximation algorithm with approximation ratio 3 for this problem. (Hint:
Show recursively that we can visit all the nodes in a bottleneck spanning tree, as
discussed in Problem 23-3, exactly once by taking a full walk of the tree and skip-
ping nodes, but without skipping more than two consecutive intermediate nodes.
Show that the costliest edge in a bottleneck spanning tree has a cost that is at most
the cost of the costliest edge in a bottleneck hamiltonian cycle.)
35.2-5
Suppose that the vertices for an instance of the traveling-salesman problem are
points in the plane and that the cost c.u; !/ is the euclidean distance between
points u and !. Show that an optimal tour never crosses itself.

35.3 The set-covering problem

The set-covering problem is an optimization problem that models many problems
that require resources to be allocated. Its corresponding decision problem general-
izes the NP-complete vertex-cover problem and is therefore also NP-hard. The ap-
proximation algorithm developed to handle the vertex-cover problem doesn’t apply
here, however, and so we need to try other approaches. We shall examine a simple
greedy heuristic with a logarithmic approximation ratio. That is, as the size of the
instance gets larger, the size of the approximate solution may grow, relative to the
size of an optimal solution. Because the logarithm function grows rather slowly,
however, this approximation algorithm may nonetheless give useful results.

1118 Chapter 35 Approximation Algorithms

S3

S6

S4 S5

S2

S1

Figure 35.3 An instance .X; F / of the set-covering problem, where X consists of the 12 black
points and F D fS1; S2; S3; S4; S5; S6g. A minimum-size set cover is C D fS3; S4; S5g, with
size 3. The greedy algorithm produces a cover of size 4 by selecting either the sets S1, S4, S5,
and S3 or the sets S1, S4, S5, and S6, in order.

An instance .X; F / of the set-covering problem consists of a finite set X and
a family F of subsets of X , such that every element of X belongs to at least one
subset in F :
X D

[

S2F

S :

We say that a subset S 2 F covers its elements. The problem is to find a minimum-
size subset C ! F whose members cover all of X :
X D

[

S2C

S : (35.8)

We say that any C satisfying equation (35.8) covers X . Figure 35.3 illustrates the
set-covering problem. The size of C is the number of sets it contains, rather than
the number of individual elements in these sets, since every subset C that covers X
must contain all jX j individual elements. In Figure 35.3, the minimum set cover
has size 3.

The set-covering problem abstracts many commonly arising combinatorial prob-
lems. As a simple example, suppose that X represents a set of skills that are needed
to solve a problem and that we have a given set of people available to work on the
problem. We wish to form a committee, containing as few people as possible,
such that for every requisite skill in X , at least one member of the committee has
that skill. In the decision version of the set-covering problem, we ask whether a
covering exists with size at most k, where k is an additional parameter specified
in the problem instance. The decision version of the problem is NP-complete, as
Exercise 35.3-2 asks you to show.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U " S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time ".n/-approximation algorithm, where
".n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

1120 Chapter 35 Approximation Algorithms

To show that GREEDY-SET-COVER is a ".n/-approximation algorithm, we as-
sign a cost of 1 to each set selected by the algorithm, distribute this cost over
the elements covered for the first time, and then use these costs to derive the de-
sired relationship between the size of an optimal set cover C! and the size of the
set cover C returned by the algorithm. Let Si denote the i th subset selected by
GREEDY-SET-COVER; the algorithm incurs a cost of 1 when it adds Si to C . We
spread this cost of selecting Si evenly among the elements covered for the first time
by Si . Let cx denote the cost allocated to element x, for each x 2 X . Each element
is assigned a cost only once, when it is covered for the first time. If x is covered
for the first time by Si , then
cx D

1

jSi " .S1 [S2 [# # # [Si"1/j
:

Each step of the algorithm assigns 1 unit of cost, and so
jC j D

X

x2X

cx : (35.9)

Each element x 2 X is in at least one set in the optimal cover C!, and so we have
X

S2C!

X

x2S

cx $
X

x2X

cx : (35.10)

Combining equation (35.9) and inequality (35.10), we have that
jC j %

X

S2C!

X

x2S

cx : (35.11)

The remainder of the proof rests on the following key inequality, which we shall
prove shortly. For any set S belonging to the family F ,
X

x2S

cx % H.jS j/ : (35.12)

From inequalities (35.11) and (35.12), it follows that
jC j %

X

S2C!

H.jS j/

% jC!j # H.max fjS j W S 2 F g/ ;

thus proving the theorem.
All that remains is to prove inequality (35.12). Consider any set S 2 F and any

i D 1; 2; : : : ; jC j, and let
ui D jS " .S1 [S2 [# # # [Si /j
be the number of elements in S that remain uncovered after the algorithm has
selected sets S1; S2; : : : ; Si . We define u0 D jS j to be the number of elements

35.3 The set-covering problem 1121

of S , which are all initially uncovered. Let k be the least index such that uk D 0,
so that every element in S is covered by at least one of the sets S1; S2; : : : ; Sk and
some element in S is uncovered by S1 [S2 [# # # [Sk"1. Then, ui"1 $ ui , and
ui"1 " ui elements of S are covered for the first time by Si , for i D 1; 2; : : : ; k.
Thus,
X

x2S

cx D
kX

iD1

.ui"1 " ui / #
1

jSi " .S1 [S2 [# # # [Si"1/j
:

Observe that
jSi " .S1 [S2 [# # # [Si"1/j $ jS " .S1 [S2 [# # # [Si"1/j

D ui"1 ;

because the greedy choice of Si guarantees that S cannot cover more new ele-
ments than Si does (otherwise, the algorithm would have chosen S instead of Si).
Consequently, we obtain
X

x2S

cx %
kX

iD1

.ui"1 " ui/ #
1

ui"1

:

We now bound this quantity as follows:
X

x2S

cx %
kX

iD1

.ui"1 " ui / #
1

ui"1

D
kX

iD1

ui"1X

j Dui C1

1

ui"1

%
kX

iD1

ui"1X

j Dui C1

1

j
(because j % ui"1)

D
kX

iD1

ui"1X

j D1

1

j
"

uiX

j D1

1

j

!

D
kX

iD1

.H.ui"1/ " H.ui //

D H.u0/ " H.uk/ (because the sum telescopes)
D H.u0/ " H.0/

D H.u0/ (because H.0/ D 0)
D H.jS j/ ;

which completes the proof of inequality (35.12).

1122 Chapter 35 Approximation Algorithms

Corollary 35.5
GREEDY-SET-COVER is a polynomial-time .ln jX jC1/-approximation algorithm.

Proof Use inequality (A.14) and Theorem 35.4.
In some applications, max fjS j W S 2 F g is a small constant, and so the solution

returned by GREEDY-SET-COVER is at most a small constant times larger than
optimal. One such application occurs when this heuristic finds an approximate
vertex cover for a graph whose vertices have degree at most 3. In this case, the
solution found by GREEDY-SET-COVER is not more than H.3/ D 11=6 times as
large as an optimal solution, a performance guarantee that is slightly better than
that of APPROX-VERTEX-COVER.

Exercises
35.3-1
Consider each of the following words as a set of letters: farid;dash;drain;
heard;lost;nose;shun;slate;snare;threadg. Show which set cover
GREEDY-SET-COVER produces when we break ties in favor of the word that ap-
pears first in the dictionary.
35.3-2
Show that the decision version of the set-covering problem is NP-complete by
reducing it from the vertex-cover problem.
35.3-3
Show how to implement GREEDY-SET-COVER in such a way that it runs in time
O

!P
S2F jS j

"
.

35.3-4
Show that the following weaker form of Theorem 35.4 is trivially true:
jC j % jC!jmax fjS j W S 2 F g :

35.3-5
GREEDY-SET-COVER can return a number of different solutions, depending on
how we break ties in line 4. Give a procedure BAD-SET-COVER-INSTANCE.n/
that returns an n-element instance of the set-covering problem for which, depend-
ing on how we break ties in line 4, GREEDY-SET-COVER can return a number of
different solutions that is exponential in n.

