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Introduction
num In an undirected graph, the maximum matching problem requires finding a set
of nonadjacent edges having the largest total size or largest total weight. This graph
optiinization problem arises in a number of applications, often involving the optimal
num pairing of a set of objects.

11.3.1 Matchings

Matchings are defined on undirected graphs, in which the edges can be weighted.
Matchings are useful in a wide variety of applicalions, such as vehicle and crew schedul-
ing, sensor location, snowplowing streets, scheduling on parallel machines, among others.

DEFINITIONS

D1: Let G = (V, E) be an undirected graph with vertex set V and edge set E. Each
edge ¢ € E has an associated weight w,.

D2: A matchingin G = (V, E) is a set M C F of pairwise nonadjacent edges.

D3: A vertex coverin G Is a set C of vertices such that every edge in ¢ 15 incident
on at least one vertex in C.

D4: A perfect matching in G = (V| E) is a matching M in which each vertex of V
1s incident on exactly one edge of M.

TERMINOLOGY: A perfect matching of G is also called a 1-factor of G see §5.3.

D5: The size (cardinality) of a matching M is the number of edges in ]LM, writien
|M|. The weight of a matching M is wt(M) =", 5 we.

D6: A maximum-size matching of G i1s a matching M having the largest size |M|.

D7: A maximum-weight matching of &G is a matching M having the largest weight
wi(M).

D8: Relative to a matching M in ¢ = (V, E}, edges ¢ € M are matched edges, while
edges e € £ — M are free edges. Vertex v is matched if it is incident on a matched
cdge; otherwise vertex v is free (or unmatched).

D9 Every matched vertex v has a mafe, the other endpoint of the matched edge
incident on v,
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D10: With respect to a matching M, the weight wi(P) of path P is the sum of the
weights of the free edges in P minus the sum of the weights of the matched edges in P.

D11: An alternating path has edges that are alternately free and matched. An
augmenting path is an alternating path that starts at a free vertex and ends at another
free vertex.

NOTATION: Throughout this section, edges are represented as ordered pairs of vertices,
and when discussing matchings, paths are represented as edge sets.

EXAMPLES

El: Figure 11.3.1 shows a graph G together with the matching M; = {(2, 3),(4,5)} of
size 2; the matched edges are highlighted. The mate of vertex 2 is vertex 3, and the mate
of vertex 5 1s vertex 4. Relative to matching M,, vertices 1 and 6 are free vertices, and
an augmenting path P from 1 to 6 is given by P = {(1,2), (2, 3), (3,4), (4,5), (5,6)}. The
matching M; i1s not a maximum-size matching; the matching M, = {(1, 2), (3,4), (5,6)}
of size 3 1s a maximum-size matching, in fact a perfect matching.

Figure 11.3.1 A matching in a graph.

E2: Figure 11.3.2 shows a graph G with 6 vertices. The matching M = {(2,4),(3,5)}
displayed 1s a maximum-size matching, of size 2. This graph G does not have a perfect
matching.

1 2
3 4
5 6

Figure 11.3.2 A maximum-size matching that is not perfect.

E3: In the weighted graph G of Figure 11.3.3 below, the weight w, is shown next
to each edge e. The weight of matching M = {(1,2),(3,5)} is wi(M) = 7. Relative
to this matching, the path P = {(1,2),(2,5),(3,5),(3,6)} is an alternating path with
wt(P) =7+1-2-5=1. The path {(1,4),(1,2),(2,3),(3,5),(5,6)} is an augmenting

path, joining the free vertices 4 and 6.

1 2 2- 4 3
1 6 s 5 1
4 3 5 “ 6

Figure 11.3.3 A matching in a weighted graph.

Section 1

Some F

FACTS

F1: If
and the

F2: If

F3: (V
of any n

F4: E»
E5: X

symmet

NOTE:
M and

F6: (A

1s nn au

e | i
wi(MA

F8: St
size k. 1
1S a mas

F9: Le¢
iz 12
Then wn

F10: !
the Aug
the weig

EXAMPL
E4: In

with res
has an o
size one
size mat

E5:. In
size of a
(minimu
matchin

E6: Fy
edge (2,
of size 1
wt(P]) =
be verifi



d FLOWS

n of the
ssin P.

xd. An

another

rertices,

1,5)} of
1€ mate
:es, and
)} The
,(5,6)}

/(3,5)}
perfect,

n next
elative
h with
ienting

Section 11.3 Matchings and Assignments 1105

Some Fundamental Results

FACTS

F1: If M is a matching of G = (V, E), then the number of matched vertices is 2| M |
and the number of free vertices is |V| — 2|M|.

F2: If M is any matching in GG, then |M| < []%—IJ

F3: (Weak Duality) The size of any vertex cover of GG is an upper bound on the size
of any matching in G.

F4: Every augmenting path has an odd number of edges.

F5: If M is a matching and P is an augmenting path with respect to M, then the
symmetric difference M AP is a matching of size [M|+ 1.

NOTE: The symmetric difference M AP is taken with respect to the edge sets defining
M and P.

F6: (Augmenting Path Theorem) M is a maximum-size matching if and only if there
is nn augmenting path with respect to M. (See [Pel891], [Be57], [NoRa59].)

F7: If M is a matching and P is an augmenting path with respect to M, then
wt(MAP) = wt(M) + wt(P).

F8: Suppose M is a matching having maximum weight among all matchings of a fixed
size k. If P is an augmenting path of maximum weight with respect to M, then MAP
is a maximum-weight matching among all matchings of size k + 1.

F9: Let M; be a maximum-weight matching among all matchings of a fixed size ¢,
i=1,2...,k, and let P; be a maximum-weight augmenting path with respect to M;.
Then wt(Py) > wi(Ps) > --- > wi(Py).

F10: An immediate consequence of Facts 8 and 9 is a weighted-matching analogue to
the Augmenting Path Theorem: A matching M is of maximum weight if and only if
the weight of every augmenting path relative to M is nonpositive.

EXAMPLES

E4: In Figure 11.3.1, the path P = {(1,2),(2,3),(3,4), (4,5),(5,6)} is augmenting
with respect to the matching M; = {(2,3),(4,5)}. As guaranteed by Fact 4, path P
has an odd number of edges. The new matching My = M, AP = {(1,2), (3,4),(5,6)} has
size one greater than M, and is a maximum-size matching. There are other maximum-
size matchings, such as {(1,2), (3,6),(4,5)} and {(1,5),(2,6),(3,4)}.

E5: In Figure 11.3.2, the set S = {3,4} is a vertex cover of G. Thus, by Fact 3, the
size of any matching M satisfies |M| < 2 = |S|. On the other hand, S = {2,3,4,5} is a
(minimum cardinality) vertex cover of the graph in Figure 11.3.1, yet a maximum-size
matching M for this graph satisfies |M| = 3 < |S|.

E6: Figure 11.3.4(a) below shows a matching M; of size 1, with wt(M;) = 7. Since
edge (2,5) has maximum weight among all edges, M, is a maximum-weight matching
of size 1. Relative to M;, the augmenting path P, = {(1,5),(2,5),(2,3)} has weight
wt(Py) = 6+4—7 = 3, whereas the augmenting path P, = {(3,6)} has weight 1. It can
be verified that P; is a maximum-weight augmenting path relative to M;. Illustrating
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Fact 8, My, = M AP, = {(1,5),(2,3)} is a maximum-weight matching of size 2, with APPLI
wt(M>) = wit(M,) + wt(P;) = 10 (see Figure 11.3.4(b)). Relative to M, there are

several augmenting paths between the free vertices 4 and 6: J ?1:
i o0ome
Q1 ={(1,4),(1,5),(5,6)}, wi(@)=1+3-6=-2, | if thes
Qs = {(1,4),(1,5),42,8),(2,3),(3,8)}, wt(@2)=14+T7T+1-6—-4=-1, | constr
Qs = {(4,5),(1,5),(1,2),(2,3),(3,6)}, wi(Qs)=5+2+1-6-4=-2. | F“EAS‘*
§ 1. C
Path @, is a maximum-weight augmenting path and so (by Fact 8) M3 = MA@, = i
{(1,4),(2,5),(3,6)} is a maximum-weight matching of size 3, with wi(M3z) = 9. All { A2:
augmenting paths relative to M, have negative weight, and so (by Fact 10) M is a exactl
maximum-weight matching in G. applic:
<4 2 2 4 3 1 P 2 4 3 suitabi
X is tl
1 7 1 1 7 1
A3: 7
i 5 5 3 6 4 5 5 3 6 i over ti
though
(a) (b) and Y
Figure 11.3.4 Maximum-weight matchings of sizes 1 and 2. s 1
given o
the obj
REMARKS X and
R1: Fact 6 was obtained independently by C. Berge [Be57] and by R. Z. Norman and cerm Ee(
M. O. Rabin [NoRab9]. This result was also recognized in an 1891 paper of J. Petersen i
The we
[Pe1891]. g
maximu
R2: An historical perspective on the theory of matchings is provided in [P192]. 4 pairing
R3: Plummer [P193] describes a number of variations on the standard matching prob-
lem, together with their computational complexity. FACTS
s FAA
in G is
11.3.2 Matchings in Bipartite Graphs general
Bipartite graphs arise in a number of applications (such as in assigning personnel F12: (
to jobs or tracking objects over time). See the surveys [AhMaOr93], [AhMaOrRe95], 5] hold
and [Ge95] as well as the text [LoPI86] for additional applications. This section de- o8t of ve
scribes properties and algorithms for maximume-size and maximum-weight matchings in Gr99].)
bipartite graphs. M
ipartite graph F13: ¢
(X Uy,
DEFINITIONS
Dl?2: Let G = (X UY, E) be a bipartite ‘graph with n vertices, m edges, and edge EXAMPL
weights we.
D13: If SC X then I'(S) = {y € Y | (z,y) € E for some z € S} is the set of vertices E7 In
in Y adjacent to some vertex of S. s
As guar
D14: A complete (or X-saturating) matchingof G = (X UY, E) is a matching M have I'(.
in which each vertex of X 1s incident on an edge of M. Such a matching is also called : complets
an assignment from X to Y. matchin
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APPLICATIONS

Al: A drug company is testing n antibiotics on n volunteer patients in a hospital.
Some patients have known allergic reactions to certain of these antibiotics. To determine
if there is a feasible assignment of the n different antibiotics to n different patients,
construct the bipartite graph 7 = (X UY, ¥), where X is the set of antibiotics and Y 1s
the set of patients. An cdge (7, j) € E exists when patient j is nof allergic to antibiotic
i. A complete matching of 7 is then sought.

A2: There are n applicants to be assigned to n jobs, with each job being filled with
exactly one applicant. The weight w;; measures the suitability (or productivity) of
applicant 7 for job j. Finding a valid assignment (matching) achieving the best overall
suitability is a weighted matching problem on the bipartite graph ¢ = (XUY, ), where
X is the set of applicants and Y is the set of jobs. '

A3: The movements of n objects (such as submarines or missiles) are 1o be followed
over time. The locations of the group of objects are known at two dislinct times,
though without identification of the individual objects. Suppose X = {21, 1s,..., 25}
and ¥ = {41, y2,...,yn} represent the spatial coordinates of the objects detected al
times t and t + At. If At is sufficiently small, then the Euclidean distance between a
given object’s position at these two times should be relatively small. To aid in identifying
the objects (as well as their velocities and directions of travel), a pairing between set
X and set Y is desired that minimizes the overall sum of Euclidean distances. This
can be formulated as a maximum-weight matching problem on the complete bipartite
graph G = (X UY, E), where edge (7, j) indicates pairing position z; with position y;.
The weight of this edge is the negative of the Fuclidean distance between 2; and y;. A
maximum-weight matching of size n in G then provides an optimal {mintmum distance)
pairing of observations at the two times t and ¢ + At.

FACTS

F11: (Konig’s Theorem) For a bipartite graph (7, the maximum size of a matching
in (G is the minimum cardinality of a vertex cover in 7. Thus for bipartite graphs the
general inequality staled in Fact 3 can always be satisfied as an equality. (See {Bo90].)

F12: (Hall’s Theorem) & = (XUY, F) has a complete matching if and only if |T'(5)} >
{5 holds for every S C X. In words, a complete matching exists precisely when every
set of vertices in X is adjacent to at least an equal number of vertices in Y. (See [Ba90,

Gr99].)
F13: Suppose there exists some & such that deg{x) > & > deg(y) holds in G =
(XY, Ejforall z € X and y € Y. Then G has a complete matching. (See [Gr99].)

EXAMPLES

E7: In the bipartite graph of Figure 11.3.5 below, § = {1,3,b,d} is a vertex cover of
minirmum cardinality, and M = {{1,4a), (3,¢), (4,8), (6, d)} is a maximum-size matching.
As guaranteed by Konig's Theorem, |M| = |S|. Also, by choosing A — {2,4,5} we
have T(A} = {b,d}. Since |[['(A)] < |4] holds, Hall’s Theorem shows that there is no
complete matching with respect to the set X = {1,2,3,4,5}. In fact, the maximum
matching M ahove has size 4 < 5.
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1 a
2 b
3 c
4 d
5 e

Figure 11.3.5 Covers and matchings in a bipartite graph.

E8: In the chessboard of Figure 11.3.6, we are to place non-taking rooks at certain
allowable positions, those marked with an X. For example, we can place rooks at the
independenl positions (1,3),(2,4), (4,1): no two selected positions are in the same row
or column. It turns out that three is the maximum number of rooks that can be so placed
with regard to the allowable positions X. Also, notice that row 2, row 4, and column 3
are three lines in the chessboard containing all X entries; in fact, no fewer number of
lines suffice. Here the maximum number of non-taking rooks among the X entries equals
the minimum number of lines containing all the X entries. This is a manifestation of
Konig’s Theorem, obtained by constructing the bipartite graph G = (X UY, E) where
X contains the rows {1,2,3,4} and Y contains the columns {1,2,3,4,5}; edge (i,j) € E
indicates an X in row ¢ and column j. In this context, independent positions correspond
to a matching and covering lines correspond to a vertex cover in G.

(| S ST T

A W N

Figure 11.3.6 A chessboard with allowable X entries.

REMARKS

R4: Konig’s Theorem and Hall’s Theorem can be derived from the Max-Flow Min-Cut
Theorem of §11.1.

R5: Maximum-size matching problems in bipartite graphs can be formulated as maxi-
mum flow problems in unit capacity networks and solved using maximum flow algorithms

(§11.1).

R6: Maximum-weight matching problems in bipartite graphs can be formulated as
minimum cost flow problems in two-terminal flow networks and solved using minimum
cost flow algorithms (§11.2).

Bipartite Maximum-Size Matching Algorithm

Algorithm 11.3.1, based on Fact 6, produces a maximume-size matching of the bipartite
graph G = (X UY, E). Each iteration involves a modified breadth-first search of G,
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starting with all free vertices in set X. The vertices of (G are structured into levels that
alternate between free and matched edges. Algorithm algnum can be implemented to
run in O{nm) time (see [PaSt82]}).

Algorithm 11.3.1: Bipariite Maximum-Size Matching
Input: Bipartite graph G = (X UY, E}.

Output: Maximum-size matching M.
M =¥
DONE := FALSE
While NOT DONE
Let FREE consist of all the free vertices of 7.
Sx =X NFREE
SEEN :— 0
STILL LOOKING := TRUE
While STILL_LOOKING {for an augmenting path}
Sy :={y|y ¢ SEEN and (z,y) € £, z € 5x}
If Sy NFREE # B {an augmenting path exists}
Construct an augmenting path P to y*. [¥]
M = MAP
STILL_LOOKRIN(G = FALSE
Else {continue looking for an augmenting path}
SEEN := SEEN J Sy
Sy = {z I (y,:t?) cEM ye Sy}
IfSx =@
STILL LOOKING := FALSE
DONE := TRUE

REMARK

R7: The augmenting path at step [*] is constructed in reverse, starting at the free
Y-vertex y*. Choose a vertex x € Sy (adjacent to y*) by which y* was defined to be
an element of Sy. Then choose the vertex y € Sy that is matched to  in M. Vertices
from X and Y are alternately chosen in this way until an z is chosen from the initial
Sx, which means that 1t 1s a free vertex.

EXAMPLE

E9: Algorithm 11.3.1 can be used to find a maximum-size matching in the bipartite
graph of Figure 11.3.7 below. We begin with the matching M = {(1,a)},(2,8)} of size
2, shown in Figure 11.3.7(a). At the next iteration, Sx = {3,4} and Sy = {a,b).
Since both vertices of Sy are matched, the algorithm continues with Sx — {1,2} and
Sy = {c}. Since ¢ € Sy is free, with augmenting path P = {(3, a), (¢, 1), {1, ¢)}, the new
matching produced is M = {(1,¢),{2,1),(3,a)};see Figure 11.3.7(b). The next iteration
produces Sy = {4}, Sy = {&}; Sx = {2}, Sy = {a.¢}; finally Sx = {1,3}, Sy = 0,
Sx = @ No further augmenting paths are found, and Algorithm 11.3.1 terminates with
the maximum-size matching M = {(1,¢), (2,8),(3,a)}.
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Algorithm 11.3.2, based on Facts 8, 9, and 10, produces a maximum-weight matching i d(-b)
] " . ; . = : with wit|
of G = (X UY, E). Each iteration finds a maximum-weight augmenting path relative .
s : ) i ! with wi(
to the current matching M. The algorithm terminates when the path has nonpositive ‘ i
weight. A straightforward implementation of Algorithm 11.3.2 runs in O(n?m) time. e
NOTATION: The tentative largest weight of an alternating path from a free vertex in X
to vertex j is maintained using the label d(j).
Algorithm 11.3.2: Bipartite Maximum-Weight Matching
Input: Bipartite graph G = (X UY, E). -
Output: Maximum-weight matching M. ‘ F
M:=0
DONE := FALSE
While NOT DONE
Let Sx consist of all the free vertices of X.
Let d(j) := 0 for j € Sx and d(j) := —oo otherwise. 11.3.3
While Sx # 0
Sy ::;ﬁ@ This
For each edge (z,y) € E — M with = € Sx ' for (.:OHSt
If d(E) it Wey ~ d(y) i intricate

d(y) := d(z) + way

Sy := Sy U {y} DEFINITH
Sx = ] !

For each edge (y,z) € M with y € Sy

D15: 5
If d(y) — wyz > d(z) Then a v
d(z) :=d(y) — wy, | is odd if

Syi=8y U {.‘L}
Let y be a free vertex with maximum label d(y) D16: 5
and let P be the associated path. i edge (v,
Ifd(y) >0 unique cy

M = MAP

Else D17: A
DONE = TRUE b, wheret

The rever
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EXAMPLE

E10: Algorithm 11.3.2 can be used to find a maximum-weight matching in the bipar-
tite graph of Figure 11.3.8. If we begin with the empty matching, then the first iteration
yields the augmenting path P; = {(3,a)}, with wt(P;) = 6, and the maximum-weight
matching (of size 1) M = {(3,a)}, with wt(M) = 6; see Figure 11.3.8(a). The next
iteration starts with Sx = {1,2}. The labels on vertices a,b,c are then updated to
d(a) = 4, d(b) = 4, d(c) = 5, so Sy = {a,b,c}. Using the matched edge (a, 3), vertex 3
has its label updated to d(3) = —2 and Sx = {3}. No further updates occur, and the
free vertex ¢ with maximum label d(¢) = 5 is selected. This label corresponds to the aug-
menting path Py = {(2,¢c)}, with wt(P;) = 5. The new matching is M = {(2,¢), (3,a)},
with wt(M) = 11; see Figure 11.3.8(b). At the next iteration, Sx = {1} and ver-
tices a,b receive updated labels d(a) = 4, d(b) = 1. Subsequent updates produce
d(3) = =2, d(¢) = 3, d(2) = -2, d(b) = 2. Finally, the free vertex b is selected with
d(b) = 2, corresponding to the augmenting path Ps = {(1, a), (a, 3), (3,¢), (¢,2),(2,b)},
with wt(P3) = 2. This gives the maximum-weight matching M = {(1,a), (2,5),(3,¢)},
with wi(M) = 13, shown in Figure 11.3.8(c). As predicted by Fact 9, the weights of the
augmenting paths are nonincreasing: wt(P,) > wt(Ps) > wt(Ps).

4
1 a 1 a
S
2 et /e b 2 b
5
3 c 3 e
(a) (b) (c)

Figure 11.3.8 Maximum-weight matchings of sizes 1, 2, and 3.

11.3.3 Matchings in Nonbipartite Graphs

This section discusses matchings in more general (nonbipartite) graphs. Algorithms
for constructing maximums-size and maximum-weight matchings are considerably more
intricate than for bipartite graphs. The important new concept is that of a “blossom”.

-

DEFINITIONS

D15: Suppose P is an alternating path from a free vertex s in graph G = (V, E).
Then a vertex v on P is even if the subpath P;, of P joining s to v has even length; it

is odd if P;, has odd length.

D16: Suppose P is an alternating path from a free vertex s to an even vertex v and
edge (v, w) € F joins v to another even vertex w on P. Then P U {(v,w)} contains a
unique cycle, called a blossom.

D17: A shrunken blossom results when a blossom B is collapsed into a single vertex
b, whereby any edge (z,y) with 2 ¢ B and y € B is transformed into the edge (z,¥b).
The reverse of this process gives an expanded blossom.



