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Introduction 
I n an undirected graph, the m a x i m u m match ing prob lem requires f ind ing a set 

of nonadjacent edges having the largest t o t a l size or largest t o t a l weight. Th is graph 
o p t i m i z a t i o n problem arises i n a number of applications, often invo lv ing the o p t i m a l 
p a i r i n g of a set of objects. 

11.3.1 Matchings 
Matchings are defined on undirected graphs, in which the edges can be weighted. 

Matchings are useful in a wide variety of applications, such as vehicle and crew schedul­
ing , sensor locat ion , snowplowing streets, scheduling on paral le l machines, among others. 

DEFINITIONS 

D l : Let G = (V, E ) be an undirected graph w i t h vertex set V and edge set E. Each 
edge e £ E has an associated weight we. 

D 2 : A matching i n G = (V, E ) is a set M C E of pairwise nonadjacent edges. 

D 3 : A vertex cover i n G is a set C of vertices such t h a t every edge in G is incident 
on at least one vertex in C. 

D 4 : A perfect matching i n G = (V, E ) is a match ing M i n which each vertex of V 
is incident on exactly one edge of M. 

T E R M I N O L O G Y : A perfect match ing of G is also called a 1-factor of G; see §5.3. 

D 5 : The s i ze (cardinality) o f a match ing M is the number of edges in M, w r i t t e n 
\M\. The weight of a match ing M is wt(M) — YleeM we-

D 6 : A maximum-size matching o f G is a match ing M hav ing the largest size |M|. 

D 7 : A maximum-weight matching of G is a match ing M having the largest weight 
wt(M). 

D 8 : Relative to a match ing M i n G = (V, E ) , edges e £ M are matched edges, whi le 
edges e £ E — M are free edges. Vertex v is matched i f i t is incident on a matched 
edge; otherwise vertex v is free (or unmatched). 

D 9 : Every matched vertex v has a mate, the other endpoint of the matched edge 
incident on v. 
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D 1 0 : W i t h respect to a match ing M , the weight wt(P) o f p a t h P is the sum of the 
weights of the free edges i n P minus the sum of the weights of the matched edges i n P. 

D l l : A n alternating pa th has edges that are alternately free and matched. A n 
augmen ting p a t h is an a l ternat ing p a t h t h a t starts at a free vertex and ends at another 
free vertex. 

N O T A T I O N : T h r o u g h o u t this section, edges are represented as ordered pairs of vertices, 
and when discussing matchings, paths are represented as edge sets. 

EXAMPLES 

E l : Figure 11.3.1 shows a graph G together w i t h the m a t c h i n g M i = { (2 , 3) , (4, 5 ) } of 
size 2; the matched edges are h ighl ighted . The mate of vertex 2 is vertex 3, and the mate 
of vertex 5 is vertex 4. Relative to match ing M i , vertices 1 and 6 are free vertices, and 
an augment ing path P f r om 1 to 6 is given by P = { ( 1 , 2 ) , (2, 3 ) , (3 ,4 ) , (4 ,5 ) , ( 5 ,6 ) } . The 
match ing M j is not a maximum-size match ing ; the match ing M 2 = { ( 1 , 2 ) , (3 ,4 ) , (5 ,6 ) } 
of size 3 is a maximum-size match ing , i n fact a perfect match ing . 

2 3 

5 

Figure 11.3.1 A m a t c h i n g i n a g r a p h . 

E 2 : Figure 11.3.2 shows a graph G w i t h 6 vertices. The m a t c h i n g M = { ( 2 , 4 ) , ( 3 ,5 ) } 
displayed is a maximum-size match ing , of size 2. T h i s graph G does not have a perfect 
match ing . 

Figure 11.3.2 A m a x i m u m - s i z e m a t c h i n g t h a t is not p e r f e c t . 

E 3 : I n the weighted graph G of Figure 11.3.3 below, the weight we is shown next 
t o each edge e. The weight of match ing M = { ( 1 , 2 ) , ( 3 , 5 ) } is wt(M) = 7. Relative 
to th is m a t c h i n g , the path P = { ( 1 , 2 ) , (2, 5) , (3 ,5 ) , (3, 6 ) } is an a l ternat ing pa th w i t h 
wt(P) = 7 + 1 - 2 - 5 = 1. The p a t h { ( 1 , 4) , ( 1 , 2) , (2 ,3 ) , (3 ,5 ) , (5, 6) } is an augmenting 
p a t h , j o i n i n g the free vertices 4 and 6. 

Figure 11.3.3 A m a t c h i n g i n a w e i g h t e d g r a p h . 
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Some Fundamental Results 

FACTS 

F l : I f M is a match ing of G = (V, E ) , then the number of matched vertices is 2|M| 
and the number of free vertices is |V| — 2|M|. 

F 3 : (Weak D u a l i t y ) The size of any vertex cover of G is an upper bound on the size 
of any match ing i n G. 

F 4 : Every augment ing pa th has an odd number of edges. 

F 5 : I f M is a match ing and P is an augmenting path w i t h respect to M , then the 
symmetr i c difference MAP is a match ing of size \M\ + 1. 

N O T E : T h e symmetr i c difference MAP is taken w i t h respect to the edge sets defining 

F 6 : ( A u g m e n t i n g Path Theorem) M is a maximum-size m a t c h i n g i f and only i f there 
is no augment ing p a t h w i t h respect to M. (See [Pel891] , [Be57], [NoRa59].) 

F 7 : I f M is a match ing and P is an augmenting pa th w i t h respect to M, then 
wt(MAP) = wt(M) + wt(P). 

F 8 : Suppose M is a match ing having m a x i m u m weight among a l l matchings of a fixed 
size k. I f P is an augmenting p a t h of m a x i m u m weight w i t h respect to M , then MAP 
is a m a x i m u m - w e i g h t match ing among al l matchings of size k + 1. 

F 9 : Let M ; be a max imum-we ight match ing among a l l matchings o f a fixed size i, 
i — 1,2... ,k, and let P, be a m a x i m u m - w e i g h t augmenting p a t h w i t h respect to M,- . 
T h e n wt(Pi) > wt{P2) >••> wt(Pk). 

F 1 0 : A n immedia te consequence of Facts 8 and 9 is a weighted-matching analogue to 
the A u g m e n t i n g Path Theorem: A match ing M is of m a x i m u m weight i f and only i f 
the weight of every augmenting pa th relative to M is nonposit ive. 

EXAMPLES 

E 4 : I n Figure 11.3.1, the pa th P = { ( 1 , 2) , (2, 3) , (3 ,4 ) , (4, 5 ) , ( 5 ,6 ) } is augmenting 
w i t h respect to the match ing M\ = { ( 2 , 3) , ( 4 , 5 ) } . As guaranteed by Fact 4, path P 
has an odd number of edges. T h e new match ing M 2 = M j A P = { ( 1 , 2 ) , (3 ,4 ) , (5 ,6 ) } has 
size one greater t h a n M i , and is a maximum-size match ing . There are other m a x i m u m -
size matchings , such as { ( 1 , 2) , (3, 6 ) , (4, 5)} and { ( 1 , 5) , (2 ,6 ) , ( 3 , 4 ) } . 

E 5 : I n Figure 11.3.2, the set 5 = { 3 , 4 } is a vertex cover of G. Thus , by Fact 3, the 
size o f any m a t c h i n g M satisfies \M\ < 2 = \S\. O n the other hand , S = {2, 3, 4, 5} is a 
( m i n i m u m card ina l i ty ) vertex cover of the graph in Figure 11.3.1, yet a maximum-size 
match ing M for this graph satisfies \M\ = 3 < \S\. 

E 6 : Figure 11.3.4(a) below shows a match ing M i of size 1, w i t h wt(Mi) = 7. Since 
edge (2,5) has m a x i m u m weight among a l l edges, M i is a m a x i m u m - w e i g h t matching 
of size 1. Relative to M i , the augment ing pa th Pi = { ( 1 , 5 ) , (2, 5) , (2 ,3 ) } has weight 
wt(Pi) = 6 + 4 — 7 = 3, whereas the augmenting pa th P 2 = { ( 3 , 6 ) } has weight 1. I t can 
be verified t h a t P i is a m a x i m u m - w e i g h t augment ing pa th relative to M i . I l l u s t r a t i n g 

F 2 : I f M is any match ing in G, then |M| < L^l 

M and P . 



1106 Chapter 11 NETWORKS and FLOWS Sectic 

Fact 8, M2 = MiAPi = { ( 1 , 5) , (2, 3 ) } is a m a x i m u m - w e i g h t match ing of size 2, w i t h 
wt(M2) - wt(Mx) + wt(Pi) = 10 (see Figure 11.3.4(b)) . Relative to M2 there are 
several augment ing paths between the free vertices 4 and 6: 

Q i = { ( l , 4 ) , ( 1 , 5 ) , ( 5 , 6 ) } , 
Q 2 = { ( 1 , 4 ) , ( 1 , 5 ) , ( 2 ,5 ) , ( 2 , 3 ) , ( 3 , 6 ) } , 
Q 3 = { ( 4 , 5 ) , ( 1 1 5 ) , ( 1 , 2 ) , ( 2 , 3 ) , ( 3 , 6 ) } ) 

wt(Qi) = 1 + 3 - 6 = - 2 , 
wt{Q2) = 1 + 7 + 1 - 6 - 4 = - 1 , 
wt(Q3) = 5 + 2 + 1 - 6 - 4 = - 2 . 

Path Q2 is a m a x i m u m - w e i g h t augmenting pa th and so (by Fact 8) M3 = M2AQ2 = 
{ ( 1 , 4 ) , (2, 5) , (3 ,6 ) } is a max imum-we ight match ing of size 3, w i t h wt(Mz) = 9. A l l 
augment ing paths relative to M2 have negative weight, and so (by Fact 10) M2 is a 
m a x i m u m - w e i g h t match ing i n G. 

,1 n 2 A 3 1 , 2 „ 3 

5 6 4 5 

(a) (b) 

Figure 11.3.4 M a x i m u m - w e i g h t m a t c h i n g s o f s izes 1 a n d 2. 

REMARKS 

R l : Fact 6 was obtained independently by C. Berge [Be57] and by R. Z. N o r m a n and 
M . O. Rabin [NoRa59] . Th is result was also recognized in an 1891 paper of J . Petersen 
[Pel891] . 

R 2 : A n histor ical perspective on the theory of matchings is provided in [P192]. 

R 3 : P l u m m e r [P193] describes a number of variations on the standard match ing prob­
lem, together w i t h their computat iona l complexity. 

11.3.2 Matchings in Bipartite Graphs 
B i p a r t i t e graphs arise in a number of applications (such as in assigning personnel 

to jobs or t rack ing objects over t i m e ) . See the surveys [ A h M a O r 9 3 ] , [AhMaOrRe95] , 
and [Ge95] as well as the text [L0PI86] for addi t iona l appl icat ions. Th is section de­
scribes properties and algor i thms for maximum-size and m a x i m u m - w e i g h t matchings in 
b i p a r t i t e graphs. 

FACTS 

F l l . ( 
in G is 
general 

DEFINITIONS 

D 1 2 : Let G = (X U V, E ) be a b ipar t i t e graph w i t h n vertices, m edges, and edge 
weights we. 

D 1 3 : I f S C X then r ( S ) = {y £ Y \ (x, y) £ E for some x £ 5 } is the set of vertices 
in Y adjacent to some vertex of S. 

D 1 4 : A complete (or X-saturating) matching of G — (X U Y, E ) is a matching M 
in which each vertex of X is incident on an edge of M. Such a match ing is also called 
an assignment f r o m X to Y. 

E 7 : I n 
m i n i m u i 
As guar 
have T( , 
completi 
matchin 
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APPLICATIONS 

A l : A drug company is testing n antibiot ics on n volunteer patients in a hospital . 
Some patients have known allergic reactions to certain of these antibiot ics . To determine 
i f there is a feasible assignment of the n different antibiot ics to n different patients, 
construct the b i p a r t i t e graph G = (X UY, E ) , where X is the set of antibiot ics and Y is 
the set of patients . A n edge (i, j) £ E exists when patient j is not allergic to ant ib io t i c 
i. A complete match ing of G is then sought. 

A 2 : There are n applicants to be assigned to n jobs, w i t h each j o b being fi l led w i t h 
exactly one appl icant . The weight to,-j measures the su i tab i l i t y (or p r o d u c t i v i t y ) of 
applicant i for j o b j . F ind ing a val id assignment (matching) achieving the best overall 
s u i t a b i l i t y is a weighted matching problem on the b i p a r t i t e graph G = (XUY, E ) , where 
X is the set of applicants and Y is the set of jobs. 

A 3 : The movements of n objects (such as submarines or missiles) are to be followed 
over t i m e . T h e locations of the group of objects are known at two dist inct t imes, 
though w i t h o u t identi f icat ion of the i n d i v i d u a l objects. Suppose X = {xi,X2,.. -,xn) 
and Y = {yi, j / 2 , • •., yn} represent the spatial coordinates of the objects detected at 
t imes t and t + At. If At is sufficiently smal l , then the Euclidean distance between a 
given object 's pos i t ion at these two times should be relatively smal l . To aid in ident i fy ing 
the objects (as well as their velocities and directions of t rave l ) , a pa i r ing between set 
X and set Y is desired t h a t minimizes the overall sum of Euclidean distances. Th is 
can be f o rmulated as a max imum-weight match ing problem on the complete b i p a r t i t e 
graph G = (X UY,E), where edge indicates pa i r ing posi t ion Xi w i t h posit ion t / j . 
T h e weight of th is edge is the negative of the Euclidean distance between X{ and yj. A 
m a x i m u m - w e i g h t match ing of size n i n G then provides an o p t i m a l ( m i n i m u m distance) 
pa i r ing of observations at the two t imes t and t + At. 

FACTS 

F l l : (Konig ' s Theorem) For a b i p a r t i t e graph G, the m a x i m u m size of a match ing 
i n G is the m i n i m u m card ina l i ty of a vertex cover in G. Thus for b ipar t i t e graphs the 
general inequal i ty stated i n Fact 3 can always be satisfied as an equality. (See [Bo90].) 

F 1 2 : (Hal l ' s Theorem) G = (XUY, E ) has a complete match ing i f and only i f |r(5)| > 
\S\ holds for every S C I . I n words, a complete match ing exists precisely when every 
set o f vertices i n X is adjacent to at least an equal number of vertices i n Y. (See [Bo90, 
Gr99] . ) 

F 1 3 : Suppose there exists some k such t h a t deg(x) > k > deg(y) holds in G = 
(X U Y, E ) for a l l x £ X and y £ Y. T h e n G has a complete match ing . (See [Gr99].) 

EXAMPLES 

E 7 : I n the b i p a r t i t e graph of Figure 11.3.5 below, S = { 1 , 3 , 6, d} is a vertex cover of 
m i n i m u m card inal i ty , and M = { ( 1 , a ) , (3, c), (4, 6), (5, d)} is a maximum-size match ing . 
As guaranteed by Konig 's Theorem, \M\ = \S\. Also, by choosing A = { 2 , 4 , 5 } we 
have T(A) = {b,d}. Since |r(A)| < \A\ holds, Hal l ' s Theorem shows t h a t there is no 
complete m a t c h i n g w i t h respect to the set X = { 1 , 2 , 3, 4, 5 } . I n fact, the m a x i m u m 
match ing M above has size 4 < 5. 



1108 Chapter 11 NETWORKS and FLOWS Sectior 

5 m me 
Figure 11.3.5 C o v e r s a n d m a t c h i n g s i n a b i p a r t i t e g r a p h . 

E 8 : I n the chessboard of Figure 11.3.6, we are to place n o n - t a k i n g rooks at certain 
allowable positions, those marked w i t h an X . For example, we can place rooks at the 
independent positions (1 ,3 ) , (2 ,4 ) , (4 ,1 ) : no two selected positions are i n the same row 
or c o l u m n . I t turns out t h a t three is the m a x i m u m number of rooks t h a t can be so placed 
w i t h regard to the allowable positions X . Also, notice t h a t row 2, row 4, and co lumn 3 
are three lines i n the chessboard containing al l X entries; i n fact, no fewer number of 
lines suffice. Here the m a x i m u m number of non- tak ing rooks among the X entries equals 
the m i n i m u m number of lines containing a l l the X entries. T h i s is a manifestat ion of 
Konig ' s Theorem, obtained by construct ing the b ipar t i t e graph G = (X UY, E ) where 
X contains the rows { 1 , 2 , 3 , 4 } and Y contains the columns { 1 , 2 , 3 , 4 , 5 } ; edge (i, j) 6 E 
indicates an X i n row i and co lumn j . I n this context, independent positions correspond 
to a match ing and covering lines correspond to a vertex cover i n G. 

1 2 3 4 5 

1 

2 

3 

4 

X 
X 

Figure 11.3.6 A c h e s s b o a r d w i t h a l l o w a b l e X e n t r i e s . 

REMARKS 

R 4 : Konig 's Theorem and Hal l ' s Theorem can be derived f r o m the M a x - F l o w M i n - C u t 
Theorem of §11.1. 

R 5 : Maximum-s ize match ing problems in b ipar t i te graphs can be formulated as m a x i ­
m u m flow problems in u n i t capacity networks and solved using m a x i m u m flow a lgor i thms 
( S H I ) . 

R.6: M a x i m u m - w e i g h t match ing problems in b ipar t i t e graphs can be formulated as 
m i n i m u m cost flow problems in t w o - t e r m i n a l flow networks and solved using m i n i m u m 
cost flow a lgor i thms (§11.2). 

Bipartite Maximum-Size Matching Algorithm 

A l g o r i t h m 11.3.1, based on Fact 6, produces a maximum-size m a t c h i n g of the b ipar t i t e 
graph G = (X U Y, E ) . Each i terat i on involves a modif ied breadth- f irst search of G, 
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s t a r t i n g w i t h a l l free vertices in set X. The vertices of G are structured i n t o levels t h a t 
alternate between free and matched edges. A l g o r i t h m a lgnum can be implemented to 
r u n i n O(nm) t ime (see [PaSt82]). 

Algorithm 11.3.1: B i p a r t i t e M a x i m u m - S i z e M a t c h i n g 

Input. B i p a r t i t e graph G = (X U Y, E ) . 
Output: Maximum-s ize matching M. 

M :=0 
DONE : = F A L S E 
W h i l e N O T DONE 

Let F R E E consist of a l l the free vertices o f G. 
Sx •= X n F R E E 
SEEN := 0 
STILL-LOOKING := T R U E 
W h i l e STILL-LOOKING { for an augment ing p a t h } 

SY ••= {y | y <£ SEEN and (x, y) £ E, x £ Sx} 
I f SY H F R E E ^ 0 {an augmenting p a t h exists} 

Construct an augmenting p a t h P to y*. [*] 
M := MAP 
STILL.LOOKING : = F A L S E 

Else {continue looking for an augment ing p a t h } 
SEEN := SEEN U SY 

Sx := {x | (y,x) £ M, yeSY} 
I f Sx = 0 

STILL-LOOKING : = F A L S E 
D O A £ : = T R U E 

REMARK 

R 7 : The augment ing pa th at step [*] is constructed i n reverse, s tar t ing at the free 
Y -ver tex y*. Choose a vertex x £ Sx (adjacent to y*) by which y* was defined to be 
an element of Sy • Then choose the vertex y £ Sy t h a t is matched to x i n M. Vertices 
f r o m X and Y are alternately chosen i n this way u n t i l an x is chosen f rom the i n i t i a l 
Sx, which means t h a t i t is a free vertex. 

EXAMPLE 

E 9 : A l g o r i t h m 11.3.1 can be used to find a maximum-size match ing in the b i p a r t i t e 
graph of Figure 11.3.7 below. We begin w i t h the m a t c h i n g M = { ( 1 , a ) , (2, 6)} of size 
2, shown i n Figure 11.3.7(a). A t the next i t e r a t i o n , Sx = { 3 , 4 } and Sy = {a,b}. 
Since b o t h vertices of Sy are matched, the a l g o r i t h m continues w i t h Sx = { 1 , 2 } and 
Sy = {c}. Since c £ Sy is free, w i t h augmenting p a t h P = { ( 3 , a ) , (a, 1), ( 1 , c ) } , the new 
match ing produced is M = { ( 1 , c), (2, 6), (3, a ) } ; see Figure 11.3.7(b). The next i t e r a t i o n 
produces Sx = { 4 } , Sy = {b}; Sx = { 2 } , Sy = {a,c}; finally Sx = { 1 , 3 } , Sy = 0, 
Sx = 0- No fur ther augmenting paths are found, and A l g o r i t h m 11.3.1 terminates w i t h 
the maximum-s ize match ing M = { ( l , c ) , (2, b), (3, a ) } . 
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Figure 11.3.7 M a x i m u m - s i z e m a t c h i n g i n a b i p a r t i t e g r a p h . 

Bipartite Maximum-Weight Matching Algorithm 

A l g o r i t h m 11.3.2, based on Facts 8, 9, and 10, produces a m a x i m u m - w e i g h t match ing 
of G = (X U V, E ) . Each i terat ion finds a max imum-we ight augment ing pa th relative 
to the current match ing M. The a l g o r i t h m terminates when the p a t h has nonpositive 
weight . A s tra ight forward implementat ion of A l g o r i t h m 11.3.2 runs in 0(n2m) t i m e . 

N O T A T I O N : T h e tentat ive largest weight of an a l ternat ing p a t h f r o m a free vertex in X 
t o vertex j is mainta ined using the label d(j). 

Algorithm 11.3.2: B i p a r t i t e M a x i m u m - W e i g h t M a t c h i n g 

Input: B i p a r t i t e graph G = (X U Y, E ) . 
Output: M a x i m u m - w e i g h t match ing M. 

M := 0 
DONE := FALSE 
W h i l e N O T DONE 

Let Sx consist of al l the free vertices of X. 
Let d(j) : = 0 for j G Sx and d(j) : = —oo otherwise. 
W h i l e Sx # 0 

SY := 0 
For each edge (x, y) G E — M w i t h x £ Sx 

I f d(x) + wxy > d(y) 
d{y) := d(x) + wxy 

SY := SY U {y} 
Sx :=0 
For each edge (y, x) G M w i t h j / G Sy 

I f <%) - w y r > d(x) 
d{x) := d(y) - wyx 

Sx := Sx U { x } 
Let y be a free vertex w i t h m a x i m u m label d(y) 
and let P be the associated p a t h . 

I f d(y) > 0 
M := MAP 

Else 
D O A £ : = T R U E 
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EXAMPLE 

E 1 0 : A l g o r i t h m 11.3.2 can be used to f ind a m a x i m u m - w e i g h t match ing in the b ipar ­
t i t e graph of Figure 11.3.8, I f we begin w i t h the empty m a t c h i n g , then the first i t e ra t i on 
yields the augment ing p a t h Pi = { ( 3 , a ) } , w i t h wt(Px) = 6, and the max imum-we ight 
match ing (of size 1) M = { ( 3 , a ) } , w i t h wt(M) = 6; see Figure 11.3.8(a). T h e next 
i t e ra t i on starts w i t h Sx — { 1 , 2 } . The labels on vertices a,b, c are then updated to 
d(a) = 4, d(b) = 4, d(c) = 5, so Sy = {a,b,c}. Using the matched edge (a, 3), vertex 3 
has its label updated to d(3) = —2 and Sx = { 3 } . No further updates occur, and the 
free vertex c w i t h m a x i m u m label d(c) = 5 is selected. T h i s label corresponds to the aug­
ment ing pa th P2 = { ( 2 , c ) } , w i t h wt(P2) — 5. The new m a t c h i n g is M = { ( 2 , c), (3, a ) } , 
w i t h wt(M) = 11; see Figure 11.3.8(b). A t the next i t e r a t i o n , Sx = { 1 } and ver­
tices a,b receive updated labels d(a) = 4, d(b) = 1. Subsequent updates produce 
d(3) = - 2 , d(c) = 3, d(2) = - 2 , d(b) = 2. F ina l ly , the free vertex 6 is selected w i t h 
d(6) = 2, corresponding to the augmenting path P3 ~ { ( 1 , a ) , (a , 3 ) , (3, c), ( c ,2 ) , (2, 6) } , 
w i t h wt(P3) = 2. T h i s gives the max imum-weight m a t c h i n g M — { ( 1 , a), (2, 6), (3, c ) } , 
w i t h wt(M) = 13, shown i n Figure 11.3.8(c). As predicted by Fact 9, the weights of the 
augmenting paths are nonincreasing: wt(Pi) > wt(P2) > wt(Ps). 

(a) (b) (c) 

Figure 11.3.8 M a x i m u m - w e i g h t m a t c h i n g s o f s izes 1, 2, a n d 3. 

11.3.3 Matchings in Nonbipartite Graphs 
T h i s section discusses matchings in more general (nonb ipar t i te ) graphs. A l g o r i t h m s 

for construct ing maximum-size and max imum-we ight matchings are considerably more 
intr i cate t h a n for b i p a r t i t e graphs. The i m p o r t a n t new concept is t h a t of a "blossom". 

DEFINITIONS 

D 1 5 : Suppose P is an a l ternat ing pa th f rom a free vertex s i n graph G = (V,E). 
T h e n a vertex v on P is e v e n i f the subpath Psv o f P j o i n i n g s to v has even length; i t 
is odd i f Psv has odd length . 

D 1 6 : Suppose P is an a l ternat ing pa th f r o m a free vertex s to an even vertex v and 
edge (v,w) £ E j o ins v to another even vertex w on P. T h e n P L ) {(v,w)} contains a 
unique cycle, called a blossom. 

D 1 7 : A shrunken blossom results when a blossom B is collapsed i n t o a single vertex 
6, whereby any edge (x,y) w i t h x ^ B and y £ B is transformed into the edge ( x , 6 ) . 
The reverse of th is process gives an expanded blossom. 


