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LABELLING GRAPHS WITH A CONDITION AT DISTANCE 2%

JERROLD R. GRIGGS! AnpD ROGER K. YEH'!!

Abstract. Given a simple graph G = (V, E) and a positive number d, an L4(2,1)- -labelling of -
G is a function f : V(G) — [0,00)!such that whenever =,y € V are adjacent, |f(z) — f)l > 24,
and whenever the distance between z and vy is two, |f(z) — f(y)| = d. The Lq4(2, 1)- -labelling numbe,-

A(G, d) is the smallest number m such that G has an L3(2,1)-labelling f with max{f(v):v e V)=

It is shown that to determine A(G, d), it suffices to study the case when d = 1 and the labe]lmg is
nonnegative integral-valued. Let A(G) = A(G,1). The labelling numbers of special classes of graphs,
e.g., A(C) = 4 for any cycle C, are described. It is shown that for graphs of maximum degree A,
A(G) < A? + 2A. If G is diameter 2, A(G) < A2, a sharp bound for some A. Determmmg A(G).is
_shown to be NP-complete by relating it to the problem of finding Hamilton paths.,
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1. Introduction. There has been a considerable effort (cf. [CR], [CW], [FGK],
[G], [H], [R1], [R2], [Rol], and [T]) to study properties of “T colorings” of graphs,
which is motivated by the task of assigning channel frequencies without interference.
Roberts [Ro2| proposed the problem of efficiently assigning radio channels to trans-
mitters at several locations, using nonnegative integers to represent channels, so that
close locations receive different channels, and channels for very close locations are at
least two apart. Therefore these channels would not interfere with each other.

We propose an analogous problem for simple graph G = (V. E). Given a real num-
ber d > 0. an Lg(2,1)-labelling of G is a nonnegative real-valued function
f : V(G) — [0.oc) such that. whenever r and y are two adjacent vertices in V,
then |f(x) — f(y)| = 2d. and. whenever the distance between r and y is 2, then
flx) — fly)| 2 d. The Ly4(2.1)-labelling number of G is the smallest number m
such that G has an Lg(2. 1)-labelling with no label greater than m and is denoted by
MG.d). If f is an Lg(2.1)-labelling of G, then we sav that f € L4(2.1)(G).

Let G be a graph and f € L4(2,1)(G). Define || f(G)] = max{f(v) : v € V(G)}.
Then A(G.d) = min|{f(G)||, where the minimum runs over all f € L4(2.1)(G). In
the language of Roberts [Ro3]. we are trving to minimize the span of an L4(2,1)-
labelling. However. we allow 0 to be a label. unlike most other analogous parameters,
because we can then nicely characterize A(G.d) in terms of A(G.1). We describe
this in §2. where we also show that for A(G.1) it suffices to consider integral-valued
labellings. Thereafter we confine our study to A(G.1). which we denote sunplv by
A = A(G). Similarly. L(2.1) = L(2.1)(G) denotes L;(2.1)(G). We let [0, k] denote
the set {0.1,.... k}.

In §§3-5 we consider the labelling numbers of some fundamental classes of graphs.
In §6G we present general upper bounds on A in terms of the maximum degree A. We
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of graphs with A close to A? are described in §8. After lnvest.ngs.tmg the complexity
of the L1(2,1)-labelling problem in §9, we conclude by proposing some problems for
further research.

2. Reduction to integral-valued labellings. First, we want to characterize
A(G, d) in terms of A(G, 1). Furthermore, we show that to determine A(G, 1) it suffices
to study the case when the labelling is integral-valued.

LEMMA 2. 1} It Kolds that A\(G,d) =d - A\(G,1).

Proof. We prove the lemma with the following claims.

Claim 1. We have that A(G,d) > d- MG, 1).

Let f € L4(2,1)(G). Define fi(z) = f(z)/d, for all z € V(G). It follows eas-
ily that fi € Li(2,1)(G). This implies that ||f(G)|/d = ||/1(G)| > A(G,1). By
compactness, some f attains A(G,d), and the claim follows.

Claim 2. We have that A(G,d) < d- A(G,1).

The proof is similar to Claim 1. Therefore the result follows. B -

" LEMMA 2.2.] Let 7,y > 0,d > 0 and k € Z+. If |z —y| > kd, then |z' —y'| > kd,
where ' = |z/d]d and y' = |y/d]d.

The two lemmas above imply the following theorem.

' THEOREM 23) Given a graph G, there is an f € L1(2,1)(G) such that f is
integral-valued and || f(G)|| =.A(G,1).

For general d, we see that A(G,d) is attained by some f € Lgq(2,1)(G) whose
values are all multiples of d, i.e., f = d - f’, where f’ € L1(2,1)(G) is integral-valued
(by Lemma 2.1). Therefore it suffices to study the case where d = 1 and to consider
in what follows only integral-valued f € L,(2,1)(G).

3. Paths, cycles, and cubes. First, let us look at the L(2,1)-labelling of an
elementary graph, the path. We have the following easy result (cf. IY]

_ProPOSITION 3.1. Let P, be a path on n vertices. Then ( i) A(P) = 2, (ii)
A(P3) = A(Ps) = 3, and (iii) A(Pn) = 4, fq_r_p__? 5. ;
~If we join the first vertex and the last vertex of a path. then we have a cyvcle. So
what is the labelling number of a cyvcle?

PROPOSITION 3.2.{ Let Cn be a cycle of length n. Then A(Crn) = 4, for any n.

Proof. If n < 4. then it is easy to verifv the result. Thus suppose that n > 5.
For all n > 5. C,, must contain a P5 as a subgraph. Hence A(C,) > A(Ps) = 4. by
Proposition 3.1.

Now we want to show that AMC,) € 4. n > 5. It suffices to show that there is
an L(2.1)-labelling f such that || f(Cy)|| = 4. Let vg..... tn—1 be vertices of Cp, such
that v, is adjacent to v;1;. 0 <7 < n — 2 and vp is adjacent to v,—;. Consider the
following labelling:

(1) If n =0 (mod 3). then define

0, ifi=0 (mod 3).
flvi) =« 2. ifi=1 (mod 3),
4. if1=2 (mod 3);

(2) If n = 1 (mod 3). then redefine the above f at v,_4..... Un—1 85
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flw) =

It is easy to show that f , deﬁned above is.in ﬂ‘ﬁ, 1)(6‘,,) for every n; for
case. Hence AM(Cy) < 4. Therefore the theorem is proved B- ‘)515’? s aa by 2

If we take a cycle Cy joined by a vertex, ‘then we have a graph Wa called a wheel
of length n, i.e., Wy = Cq V Ki. In [Y] it is shown that )\(Wn) =n+ 1W c

Next, con51der the n-cube Qn, which has 2" vertices v = (vr,..., va), where ea,ch

" wisOor 1, and edges join vertices v, w when there exists a unique such that v # w;.

ThlS bipartite graph is regular of degree n. -
' THEOREM 3. Bﬁ Let Qn be the n-cube. Then, for alln'> 5, n43 < ;\(Q,,) < 2n+1.
Pmof “The followmg modular labelling implies the stated upper bound forn > 1:

f)= 3 G+1)

twy=1

(mod 2n + 2),

where all labels are chosen to belong to [0,2n + 1}. To verify this, consider adjacent
vertices v and w. We may assume that v; —w; = 1 (0, respectively) when i = a (i # q,
respectively). Then f(v) — f(w) = a + 1 (mod 2n + 2), so that |f(v) - f(w)] > 2
Similarly, if v and w are at distance 2, we may assume that v; —w, is 1 wheni=gqa, 1
or -1 when ¢ = b, and 0 otherwise. Then f(v) ~ f{w) = a+b+2 or a—b (mod 2rn 4+ 2),
so that f(v) # f(w).

‘The lower bound of n + 3!is due to Jonas {J]. Suppose for_contradiction that
AMQn) £ n+2for some n > 5 and let f be an optimal labelling for such Q. Some
vertex ¢ is labelled 0 in an optimal labelling. The n vertices adjacent to v receive
labels that are distinct and greater than 1; i.c., each of 2,3,...,n+ 2 is used with just
cne exception i. Since n > 5, if the labellmg f does not use the label 3, it must use
the label n — 1. In the later case, we may “reflect” f and instead consider another
optimal labelling, n + 2 — f. By permuting vertices, we may assume that our optimal
iabelling f assigns 3 to vertex w. Let W, denote the set of vertices at distance 1 from
u:. The vertices in W} must receive the distinct labels 0,1,5,6....,n + 2. Thete are
(;] vertices in ¥, each adjacent to two vertices in Wl. If z € V3 is adjacent to the
vertex in W with label 7, then f(z) # 5 — 1,7.7 + 1. Two vertices in W with the
same label have no neighbors in cormmon. It follows that label 7 is used on W3 at most
H(n—2)/2] times when = 0,1,5,n + 2; |{n — 1)/2] times when ¢ = 2.4; |{n — 3)/2] !
times when ¢ = 6... ,n 4+ 1. Label 3 cannot be used on 5. Adding up the possible
labels does not account. for all (2) vertices in W2, a contradiction, a i

With considerable effort, we have determined the firsl several values as follows:
A(Qo) = 0, MQ1) = 2. A(Q2) = 4. A(Qx) = 6. AM(Q4) = 7, MQs) = 5. No pattern |
is vet evident in the labellings that attain these values. Jonas recently showed that : }
MQn) > n+4 for n = 8 and 16.; Using methods from coding theory, it was recently

f\-"
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4. "Il‘x'-'eeSUWe next"djscus‘s =the labellmg numbers of connected graphs without
cy les, that is;'trees: Tile finméuilum degree nea.rly ‘détermines the labelling number.
HEOREM 471 Let T be‘a‘tree unth ma.nmum degme A> 1 Then A(T) is either

A+l orA+2----mm higs, 337 FURIED SRS V0 e L G/ < A

1" Proof. Since T" conta.lns ‘the¥star? K1 A we have .X(T) > )\(Kl a) = A 4+ 1. We

obtain the upper bound by a first-fit (greedy) labelling. First, order V(T') so that

V(T) = {viy.5 7 v}, where} foriall 4>+ 1§ v;:is ‘attached“_]ust once to {vi;...,vi_1}.
“This can be done since T is'a tree."Now we' describe an’L(2, 1)-labelling of T Label v;
-~ ~as 0y 'then Successwely label'vgy vai i v by the-lowestiavailable ‘element of - [0 A=2).
: T-Smce eachw;,12 K <mifis: ad_]atcént‘to*only onevji Jﬂqﬂhudsls’dﬁtance'z ‘away. from

1'77;’s withij <fi there are/at: most A -!— 2; 1abels-tha.t ‘cannot be used for
";1ea5t ;one.] lab elin ,[ 14 T;4~,2]«,lls _a able totv, w,hen

il.l

W -

@ Vertex of degree A, other pendant leaves not shown

[0 Vertex of degree A-2
O Vertex

F1G. 1. Critical trees with labelling number A +2,A > 3.

Both values can occur. The value A + 1 holds for many trees, e.g., the star K, a.
We exhibit several trees in Fig. 1 with A = A + 2. All trees shown are, in fact, A~
critical; i.e., deleting any vertex (or edge) drops A. It seems that characterizing all
trees with A = A + 2 is very difficult (see §10).

5. k-colorable graphs. Before considering the labelling number of general
graphs G, we want to look at graphs with specified chromatic number x(G).

THEOREM 5.1! Let G be a graph with x(G) = k and |V(G)| = v. Then A(G) <
v+k-2. : Vi

~Proof. Since x(G) = k, we can partition G into G;U- - - UG}, where |V (G;)| = v

and each G; is an independent set. Let V; = V(G;) = {vi1,vi2.....vin ), 1 <1 < k.
Now consider the labelling f defined by

fluj)=3-1, L= g:5 .,
P I

J - 3 o 4 V-2 1 ))’

“ - e s "

D o Pl

’ Pl A,

el = ' U 8 < A
o

: o : urncomestobe_ TR
labeled Thus the Iabelhng numTaer, is.ats most A ,1 and t e‘ téhé:)fem f;ilows ; B

i
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= "_"“1 <j<w, for2<i é =

It is easﬂy venﬁed that f is in L(2 1)(G) Hence A{G) < f(G)|l =v + k —:2 i)
: LQQEC_SLLARY 5.2) Let.G be a1comgletq k—parhteigmph with. |V(G)| =i, Then
A(G) = M-i-k--ﬂ}. R i sk '-T‘.u;:“f‘“
‘ Pmof «Since G'i
s s Ond'.he other han
labels muist: be*dlst.mct *!;‘Exrthermore,‘consecutwe els.,caant be}r__
from different parts. Since we have k: components, we,ﬁnd that A(G) >-? 1H
the result follows. - 05 @ 7 (e e fp Brbael i Fr G i, J;._Jﬁ_

6. Upper bounds on A i m terms of the maximum degree In tms sectmn,
we determine the upper bound on A(G) in terms of the maximum degree of G. The
upper bound we have is analogous to the Brooks theorem.

/ THEOREM 6.1 (Brooks [Br]). Let G be a connected graph of mazimum degree A.
If G is not a comp!ete graph or an odd cycle, then x(G) < A. 2 :

Before showing the result, whose proof is analogous to that of Theorem 6.1, we v
give the following simple result, which uses a first-fit (greedy) labelling to provide a 5
bound on A in terms of the maximum degree A for any graph. : : 1 =

THEOREM 6.2) Let G be a graph with mazimum degree A. Then AG) < A2+2A. - | i

Proof. Arbitrarily order the vertices of G, and label them in succession by the
lowest allowed integer. A vertex v € V is adjacent to at most A vertices, and there
are at most A2 — A vertices, which are distance 2 away from v. So, when we want
to label v, there are at most 3A + A2 — A = A2 + 2A numbers to be avoided. Thus
the labelling number A(G) is at most A% + 2A. (Since we can use 0 to label a vertex,
there are A? + 2A + 1 numbers that can be used.) ]

We can improve the bound above when G is 3-connected. The argument of the
next theorem is analogous to the proof, which is due to Lovasz [BM] of the Brooks
theorem.

' THEGREM 6.3.)If G is a 3-connected graph, then A(G) < A? +2A - 3.

" Proof. 1f G is complete, then it is trivial, since it is easy to see that A(G) = 2A.
Suppose that G is not complete. Then there exist three vertices u, v, w in V such that
{u,v} and {v,w} are in E but {u,w} is not in E. Set v; = u and v2 = w and let
v3,U4,....0 = v (v = |V|) be any ordering of the vertices of V' — {u,w} such that
each v;,3 < i < v — 1 is adjacent to some v; with j > i; e.g., order the vertices by
nonincreasing distance from v in G — {u, w}. We can now describe an L(2, 1)-labelling
of G: Label v; as 0 and vz as 1; then successively label v3.v4,...,v, with the lowest
available label > 0. Each vertex v;, 1 <1 < v —1 is adjacent to at most A — 1 vertices
v; with j < i. Each such v; eliminates at most three possible choices for the Jabel at
v;. Furthermore, there are at most A(A — 1) vertices vk, k < 7, at distance 2 from
1,, and each such v, eliminates at most one choice for the label at v;. It follows that,
when its turn comes to be labeled, some label in [0, A2 + 2A — 3] will be available for
v;. Finally, since v, = v is adjacent to two vertices with labels 0 and 1, there is some
label in [0, A2 + 2A — 3] available for v,. e

We can show that the first-fit labelling given in the above proof uses label A2 +
2A — 3 at most once, so it is likely that a more careful argument can improve the
bound.

Sakai [S] observed that the bound in Theorem 6.2 can be improved for chordal
wranhs. which are graphs that contain no induced cycles of length at least 4. The idea
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that, for alli, the neighbors of v;.among- {v1,..+,vi1 } form a elique.. An analysis of
=the first-fit coloring for this sequence yields her. resultss, _
/ THEQREM 1 6.4)(Sakai [S]). Let G be a chordal: graph with: mazimum degree A.
ThenA( )<(A+3)2/4 :_—_J ]“'}
. S =02 ]
7. Dxameter 32 wgraphs .We -have a; betterzupperubound for a class of: 'graphs

* that is important.in our.study; na.mely, the diameter 2°graphs. The. upper bound for
. this case, A2, Is, sharpfor;some 4. '--‘T'""*""_T’ t‘ 3 ST,

_ Now we present the followmg Iemma which will: allow w510 prove th& rggllut“
.mentloned above and. to determine the complexlty of the L(2 I)Tbéilmg problem in
_the next section. i

LEMMA 7.1 The following two Statements are eguivalent: .. ~ R
(1) Therc exists an injection f : V(G) — [0,|V|—1] such that | f{z)—f(y)| > )
2 for all {z,y} € E(G); : .
(2) G¢ contains a Hamillon path. o .

t\ is order the vertices carefully:. A chordal-graph- has a.nordermg {v1;v2,:..} of V such
f
i

L FE— e R il 2O S LR

! dkfhrr < 1\‘3..15-" ;AA-‘ <

Proof. (1) = (2): Let f be an injection defined on. V that satisfies the condition 4 T
in (1). Since f is injective, f~! exists. Order the vertices of V as follows: v; = f~1(3}, 1 v
0 < i< |V|- 1. Then 1 is adjacent to vi1 in G< for 0 < ¢ < |V| — 1. Therefore the 1
path {vo,v1,..., vy -1} is a Hamilton path of G=.

(2) = (1): Let P = {vg,v1,...,¥y-1} be a Hamilton path of G¢. Define the
function f: V(G) — [0,]V] = 1] by f(w) =1, 0 <4 < |Vi— 1. Then it is easy to see
that f is mjecmve Let {z,y} € E(G). Then f(z) = f{w) =i and f{y) = f(v;) = j
for some ¢, 7 with |¢ — 71 > 2 since x is not adjacent to y in <. Hence f is the injection
we need. L

To prove Theorem 7.3, we also need the following theorem due to Dirac [D] (see
also [BM]). .

" THEOREM 7.2.! Let G be a simple graph with V| > 3 and minimum degree
& = |V|/2. Then G is Hamiltonian.

Now we present our bound for diameter 2 graphs. ‘

TueorEM 7.8. If G is o grph with diometer 2, then A(G) < A2, " 4

Proof. 1f A = 2 then we can verify the result directly, since, in this case, (G is
either Cy, Cs or a path of length 2. Thus assume that A > 3. Po. okl rar

Suppose that A > (|[I/] — 1)/2. By Theorem 5.1, we have that A < [V} +xy -2 < -~ “ ;u(,_., |".F
20 +1+A~2=3A_ ] < A? since A > 3. L o e L

Now suppose that A < (V| — 1)/2. Then §(G*) > EVI/E Since dlam{G) 2,
obviously [V| > 3. Hence. by Theorem 7.2, G¢ is Hamiltonian; ie.. (3¢ contains ‘ Ay AN
a Hamilton path. By Lemma 7.1, there is an injection f : V — [0.[V'| — 1] such
that {f{x) — f(y})| = 2, for all {z,¥} € E(G). From here, it is easy to see that
f e L(2,1){(G) and | f{G)|| = |V| — 1. G is a diameter 2 graph, so |V| < A2 + 1.

Therefore A{(G) < |V] -1 < A2 U °
Note that the upper bound A2 is the best possible only when & = 2,3.7, and
possibly 57 because a diameter 2 graph with |V} = AZ 4+ | can exist only if A is

one of these numbers (cf. {HS]}. When A = 2, the graph is C5; when A = 3, it is
the Petersen graph. For the graph when A = 7, it is called the Hoffman-Singleton
graph {see [HS] or [BM]). Since diam{(G)=2, all labels in V must be distinct. Hence

MG} > |[V|— 1= A2 On the other hand, by Theorem 7.3, A < AZ. Thus A(G) = Az I —
only if A(G) = 2,3,7, and possibly 57. T

o— 0
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‘ According. to:the proof of ‘Theorem 7.3,'if A > 3, we also know that A'< A2
f | whenever |V| < A2+1: Hence,in general, except for those extremal graplfé mentioned .
above and C4, whose labelling number- also is Az(—4) AZ—1is an upper bound on_
A for a’ dJa[neter 2 graﬁl:l'_*”* o

BGOSR NN, 0 vt S

8 “Two specla.l classes of graphs. In this section, we wx]l present two classas

peh b

‘of graphs wlth A thatns close’to: the’bound ‘we have'in Theorem' 6.2.i:: 508 )
oy i —Firéf"le%s-’gve:somendeﬁmtmns &Wa say_a'graph ‘Glis an :ncgde ‘graph’of ;

prOJectlve pIa.ne H(n)‘of order rin; if G = (A B E) 15 a blpa.rtrte graph such that ‘T'

QYA =|Bl=n2¥n41, = 5 o w” aly

(2) eacha €'A corresponds to a point pq in H(n) a.nd each b € B corrwponds to
a line & in II(n), and

(3) E = {{a,b} : a € A, b € B such that p, € £ in II(n)}. s

By the definition of II(n), we know that such G is (n + 1)- regular, for every
z,y € A, dg(z,y) = 2, and for every u,v € B, dg(u,v) = 2. Also,.ifa € A, be B
such that a is not adjacent. to b, then dg(a,b) = 3. In Y] we have the following
theorem e (_-'/. (et Al A

! THEOREM 8. 1. If G is the mczdence ‘graph of a projective plane of order n, then
MG) =n2+n=A2— A, where A = n+1, the mazimum degree of G.

Before the next theorem, let us recall the definition of the Galois plane. Let K
be the Galois field of order n and let P = {(z1,z2,z3) : z: € K}\{(0,0,0)}. Define
an equivalence relation = on P in the following manner: (z1,z2,z3) = (y1,v2,y3) if
and only if there exists ¢ € K, ¢ # 0 for which y; = ez1, y2 = cz2, y3 = cr3. Let
these equivalence classes be called points. The set of all points defined by an equation
a171 + aszg + azzs = 0, where a;, az, az € K and not all are zero, will be called a
line, which is denoted by |a1, a2, a3).

The projective plane determined above will be E:alled a Galois plane (over the
coordinate field GF(n)) and will be denoted by PG2(n) (cf. [K]).

Next, we construct another class of graphs from the Galois plane PG3z(n) (cf
[B]). Let V(H) be the set of points of PG2(n) and join a point (z,y,z) to a point
(z',y',2") if zz/ + yy’' +22' =0, i.e., if (z',¥',2') lies on the line [z,y, z]. We call such
a graph H the polarity graph of PG2(n). Then by the properties of PG2(n), we know
that |V(H)| = n%2 + n + 1, the maximum degree A(H) = n + 1, the minimum degree
§(H) = n and the diameter is 2 (cf. [B]). Now we present the following theorem from
[Y]:

THEOREM 8.2. If H is the polarity graph of the Galois plane, PGa(n) then
AMH) =n2+n=A2 - A)where A is the mazimum degree of H.

9. The complexity of the L(2,1)-labelling problem. It is well known that
the coloring problem is an NP-complete problem. Since our L(2, 1)-labelling problem
is similar to the coloring problem, we may guess it is also NP-complete. In this section,
we verify this claim.

We need to consider the following special form of the L(2,1)-labelling problem,
where (DL) denotes distance 2 labelling:

Instance: Graph G = (V, E) with diameter 2.

L Question: Is A(G) < [V]|?
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L THEM (DL) ts NP..complete.: = S ‘ --.'“:'

Proof.“Toshow that {DL):is NP-complete, we: study the followmg dec:slonkprob-

..'lem, where'(IDL) denotes. mlectlve dxstance 2 labelhng S I
o ‘—ﬁ—’_'_rl_r_'-—‘_— ! T LT I T WL T RS M
" Instance:* Graph G = (V. B). " L T
... (IDL) Question: Is there sn mjection f V - [0, |V| - 1] such that
' [f(x) - fy)| =2 whenever {z,y} e E? T

In view of Lemma 7.1, the NP-completen%s of (IDL) follows as an immediate
~ consequence of the well-known NP-completéness of the: Hanulton path problem: (HP)
+(see [GI]): below AR T e T O ST & S S - o RIS SRR o B

RPN SN ey igud s @ "“fil *G'rr*ifv(f AR l),ﬂ“_ T
TR L Instance raph G = (V. B}, ccoopnits
(HP) '

v b e

Question: Is there a Harmltou path in G'?

Next, we observe that/(DL) 1_s_1n NP{A graph G = {V, E) can be input in time
O(iV{+ | £]), and clearly we can verify in polynomial time that G has diameter 2, that
a labelling f is in L{2,1){G), and that || f{(G)|| < |V] .

We now show that (DL) is NP-complete by transformation from (IDL) to (DL).
Let G = (V, E) be any graph in the instance of (IDL). Construct a graph G” as follows:
Add a vertex z to V and let z be adjacent to every vertex of V, ie., ' = (V' E"),
where V/ = VU {z} and £ = EU {{z,v}: for all v € V}. Then IV’l ={V|+1 and
diam(G’)=2

The NP-completeness of (DL) then follows from the NP-completeness of (IDL)
and from the following claim.

Claim. There is an injection f: V(G) — [0,|{V| — 1] such that |f(u) — f(v)} > 2

for every {u,v} € E(G) if and only if A(G") < V7.
Proof of claim. Suppose that there exists an injective function f defined on V
3 that satisfies the condition above. Define g{v) = f(v) for all v € V and g{z) =
[Vl +1 = |V'|. Then easily g € L(2,1)(G’} and ||g(G'}| == |V]+ 1 = {V/|. Hence
AMG) < V. '

Conversely, suppose that A(G') < |V/|, t.e., there is a ¢ in L{2,1)((") such that
lg(G"} < [V] + 1. Suppose that g(x) # 0 or |V| + 1. By the property of L(2, 1)(G"},
there is no v in V such that g(v) = g{z) + 1 or g(x) — 1. This implies that we must
use |V!+ 3 numbers to label V/, which is a contradiction, since {|g{G")|| < |V|+1 and
ali labels are distinct.

Hence g(x) is either 0 or [V|+ 1. If g(z) = || + 1, then restricting g to V
gives the desired injection f. Similarly, if g{x) = 0. then restricting g — 2 to VV
gives f. W]

MNP

10. Further research. Inspired by the more general proximitv-interference
problems, a more general context would be to study labellings f, where N is a pos-
itive integer and my > mp > --- > mpy > 0 are given numbers. We require that
[flz) = fy) 2 mifdgl{z,y) =i, 1 <{<N. If N =1and m; =1, then we have or-
dinary graph coloring, If N = 2, m; = 2, and m2 = 1. then it-is the L{2. 1)-labelling.
If N =2 my =1=my, then we have the L{1, 1)-labelling, which has been studied in
[Y].

Recall from the proof of Theorem 7.3 that, if A > 3 and A > (|17 — 1}/2, then
we have A < A?, regardless of whether G has diameter 2. Therefore it is reasonable
toc propose the following conjecture.
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@ww 1, For:
* 1;This conjecture holds-for: A= 2 m“new‘of Proposmons 3: 1 an. o A e
In §9 we proved that the. problem (DL) isiNP-complete, but :\}was: notia. ﬁxed
value there. Consider the following decision problem for ﬁxed A where (DLk) denotes
distance 2 Ia.belhng w1th upper bound k A

o

‘:n"'-

Instance Graph G = (V E)

(DLk) Questwn. Is A(G) < k7
i e ' SRS B RN
= M For k> 4 (DLk) s NP—compIetej---_; RS F St BTV

For nontrivial trees T, we saw:in'§4 that A(T)is either. A+ l-onrA +,2 ilt'seems
A .

_to be quite difficult to determine which of th:te two values holds, somewhat

oy

to the situation for edge—colormgs of gr phs.*tConmder th:s decxsmn prob}em fs utré;ﬁ R

RS ,.-“ Y B ;,‘ '4 T vy, D oy ;
Instance: Tree T = (v, E) T
Question: Is A(T) = A(T) + 1? :

(TREE)

QCONJECTURE 10 3. The problem (TREE) is NP- complete. |
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