
and so a ( G p ) > fc. Let 5 = { t> j , , v ^ , . . . , vJk} be an independent set of k vertices of 
GP such t h a t ji < j 2 < • • • < j ' f c . 

Now let there be given a fc-coloring of G, using the colors 1 , 2 , . . . , Jb. We now 
replace each color i (1 < i < k) by j i t a r r i v i n g at a new fc-coloring c of G. Hence i f z 
and y are two adjacent vertices of G, then x and y are assigned d is t inc t colors j r and 
J'„ where 1 < r, s < k and r fk s . Since vJr,vJa £ S, i t follows t h a t Vj Vj $ E(G ) 
and so \jr - j s \ i T. Hence c is a T-co lor ing of G. Since the largest color used in c 
is jit and 

Jk < p = x ( G , ) ( f c - l ) + l , 

i t follows by (14.2) that 

s p T ( G ) < ifc - J'l < [x(Gs)(k - 1) + 1] - 1 
= x ( G . ) ( * - l ) < t ( * - i ) , 

g iv ing the desired result. 

We now show t h a t the upper bound given i n Theorem 14.4 for the T-span of 
a graph is attainable . Suppose first t h a t T = { 0 , 2 , 4 } and consider the graphs C 3 

and C 5 . T h e n X(C3) = x ( G 5 ) = 3 and |T| = 3. B y Theorem 14.4, spT{C3) < 6 and 
S P T ( G 5 ) < 6. Figure 14.4 shows T-colorings for these graphs w i t h T-span 6. We 
show for T = {0 , 2, 4} t h a t the T-span of C3 is, i n fact, 6. Assume, t o the contrary, 
that spT(C3) = a, where a < 5. Then there exists a T-co lor ing of G3, where some 
vertex u o f C3 is colored 1 and the largest color assigned to a vertex v of C3 is 
a + 1 < 6. Since T = {0 , 2, 4 } , either a = 2 or a = 4, and the color of the remaining 
vertex w of C3 is of the same p a r i t y as either c(u) or c(v), which is impossible since 
T = { 0 , 2 , 4 } . 

Figure 14.4: T-colorings of C3 and C 5 

A n in f in i te class of graphs ver i fy ing the sharpness of the upper bound for spr(G) 
stated in Theorem 14.4 consists of the complete graphs Kn w i t h T = { 0 , 1 , . . . , t-1}, 
where * e N . B y Theorem 14.4, spT(Kn) < t ( n - l ) . Let V(Kn) = {vi,v2,... 
Assigning the color t ( i - 1) + 1 to vt for i = 1, 2 , . . . , n gives a T - co lor ing of Kn. I f 
spT(Kn) <t(n-l), then there is a T-co lor ing of Kn where the difference i n colors of 
two vertices is less t h a n t. T h i s , however, is impossible and so spT(Kn) = t(n - !)• 

14.2 L(2, l ) -Color ings 
One of the early types of colorings inspired by the Channel Assignment P r o b l e m 
occurred as a result of a communicat ion to Jerro ld Griggs by Fred Roberts, who 
proposed using nonnegative integers to represent radio channels i n order to s tudy the 
problem of op t imal ly assigning radio channels to t ransmitters at certain locations. 
As a result of this , Roger Yeh [191] i n 1990 and then Griggs and Yeh [83] i n 1992 
introduced a coloring in wh i ch colors (nonnegative integers i n this case) assigned to 
the vertices of a graph depend not only on whether two vertices are adjacent b u t 
also on whether two vertices are at distance 2. 

For nonnegative integers h and k, an L(h, fc)-coloring c of a graph G is an 
assignment of colors (nonnegative integers) to the vertices of G such that i f u and 
w are adjacent vertices of G, then |c(u) - c(iu)| > h while i f d(u,w) = 2, then 
|c(u)-c(u ' )| > k. No condi t ion is placed on colors assigned to u and v i f d(u, w) > 3. 
Hence an L ( l , 0 ) - c o l o r i n g of a graph G is a proper coloring of G. As w i t h T -
colorings, the major problems of interest w i t h L(h, fc)-colorings concern spans. For 
given nonnegative integers h and k and an L(h, fc)-coloring c of a graph G, the s p a n 
of c (or the c - span of G) is max|c(u) - c(w)\ over a l l pairs u.,w of vertices of G, 
which we denote by \h,k{c)- T h a t is, 

Afc,k(c) = max{|c(u) - c{w)\ :u,w£ V{G)}. 

For given nonnegative integers h and k, the A ^ - n u m b e r or L - s p a n of G is 

Ah,fc(G) = min{Ah,fc(c)} 

where the m i n i m u m is taken over a l l L(h, fc)-colorings c of G. Most of the interest i n 
L(h, fc)-colorings has been i n the case where h = 2 and k = 1. Therefore, an L ( 2 , 1 ) -
c o l o r i n g of a graph G (also called an L ( 2 , l ) - l a b e l i n g by some) is an assignment 
of colors (nonnegative integers, rather t h a n the more typ ica l positive integers) t o 
the vertices of G such t h a t 

(1) colors assigned to adjacent vertices must differ by at least 2, 

(2) colors assigned to vertices at distance 2 must differ, and 

(3) no restr i c t ion is placed on colors assigned to vertices at distance 3 or more. 

For an L(2, l ) - c o l o r ing c of a graph G then , the c - span of G is 

A 2 , i ( c ) = max{|c(u) - c(w)\ : u.w G V(G)}. 

For s impl ic i ty , the c-span A 2 , i ( c ) of G is also denoted by A(c). The L - s p a n or 
A 2 . i - n u m b e r A 2 , i ( G ) of G is therefore 

A 2 , i ( G ) = m i n { A ( c ) } , 

where the m i n i m u m is taken over a l l L ( 2 , l ) -co lor ings c of G. Here too, many have 
simplif ied the notat ion A 2 j i ( G ) to A(G) . (Since A(G) is common nota t i on for the 



edge-connectivity of a g raph G, i t is essential t o know the context in which this 
symbol is being used.) Therefore, i n this context, A(G) is the smallest positive 
integer k for which there exists an L ( 2 , l ) - c o l o r i n g c : V{G) —> { 0 , 1 , . . . , k). Since 
we may always take 0 as the smallest color used in an L ( 2 , l ) - c o l o r i n g of a graph 
G, i t follows t h a t A(G) is the smallest m a x i m u m color t h a t can occur i n an L ( 2 , IV. 
co lor ing of G. 

We determine A(G) for the graph G of Figure 14.5(a). T h e coloring c of G in 
Figure 14.5(b) is an L ( 2 , l ) - c o l o r i n g and so A(c) = 5. Hence A(G) < 5. We claim 
t h a t A(G) = 5. Suppose t h a t A(G) < 5. Let c' be an L ( 2 , l ) - c o l o r i n g such that 
A(c') = A(G) . We may assume t h a t c' uses some or a l l of the colors 0 ,1 ,2 ,3 ,4 . 
Since the vertices u, v, and w are m u t u a l l y adjacent, these three vertices must be 
colored 0,2 , and 4, say c'(u) = 0, c'(v) = 2, and c'(w) = 4. Since c'(y) must differ 
f r o m c'(v) by at least 2, i t follows t h a t c'(y) = 0 or c'{y) = 4. However, u and w are 
at distance 2 f rom y. i m p l y i n g t h a t c'(y) ^ 0 and c'(y) ^ 4. T h i s is a contradict ion. 
Thus , as claimed, A(G) = 5. 

x 4 

? ? 

(a) (b) 

F igure 14.5: A graph G w i t h A(G) = 5 

A fami ly of graphs whose L-span is easy to determine are the stars. 

T h e o r e m 14.5 For every positive integer t, X(K\<t) = t + 1 . 

P r o o f . Since the result is immediate i f t = 1, we may assume t h a t t > 2. The 
coloring of Kxt tha t assigns 0 , 1 , . . . , £ - 1 to the t end-vertices o f Kitt and t + 1 to 
the central vertex of K\tt is an L ( 2 , l ) - c o l o r i n g of Kiit- Thus X(Kitt) < t + 1. 

Suppose that there is an L ( 2 , l ) - c o l o r i n g of K\tt using colors i n the set 5 = 
{ 0 , 1 , . . . , t ) . Since the order o f Kitt is t + 1 and d i a m ( i < M ) = 2, i t follows t h a t for 
each i € S., exactly one vertex of Kit is assigned the color i. I n part i cu lar , the 
central vertex of K\tt is assigned a color j € S. Because some end-vertex of K\,t 
must be colored j — 1 or j + 1, th is co lor ing cannot be an L(2, l ) - c o l o r i n g of Ki,t-
Hence we have a contradic t ion and so X(Ki_t) = 4 + 1 . • 

The L-span of a tree w i t h m a x i m u m degree A can only be one of two values. 

T h e o r e m 14.6 If T is a tree with A ( T ) = A > 1, then either 

X(T) = A + 1 or A ( T ) = A + 2. 
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proof . Suppose t h a t the order of T is n. Because Kit& is a subgraph of T and 
X{K\,A) = A + 1 by Theorem 14.5, i t follows that A(T) > A + 1. We now show 
that there exists an L ( 2 , l ) - c o l o r ing of T w i t h colors f rom the set 

5 = { 0 , 1 , . . . , A + 2} 

of A + 3 colors. Denote T by Tn and let vn be an end-vertex of Tn. Le t T n _ i = 
Fn — vn and let u„_ i be an end-vertex of T n _ i . We continue i n this manner u n t i l we 
arrive at a t r i v i a l tree I \ consisting of the single vertex v\. Consider the sequence 
v\,V2, • • • ;Vn- We now give a greedy L ( 2 , l ) - c o l o r ing of the vertices of T w i t h colors 
from the set S. Assign the color 0 to vi and the color 2 to t> 2. Suppose now t h a t 
an L ( 2 , l ) - c o l o r ing of the subtree T i of T induced by v2, • • •, Vi} has been given, 
where 2 < i < n. We assign vl+\ the smallest color f rom the set S so t h a t an L ( 2 , 1 ) -
coloring of the subtree Tl+\ of T induced by {v\,V2, • • • ,Vi+i} results. F r o m the 
manner in which the sequence Vi,v2,... ,vn was constructed, Vi+\ is an end-vertex 
of Ti+i and so vl+i is adjacent to exactly one vertex Vj w i t h 1 < j < i. T h e vertex 
Vj is adjacent to at most A — 1 vertices in the subtree T{. Hence ¿̂+1 can be assigned 
a color t h a t differs f rom those assigned to at most A - 1 vertices and differs f r o m 
any color w i t h i n 1 of the color assigned to Vj. Hence at most ( A — l ) + 3 = A + 2 
colors cannot be used to color Ug+i, leaving at least one available color i n S to color 
vi+i. Thus X{T) < A + 2. • 

B y Theorem 14.5, X ( K \ T T ) = A ( i v " i j i ) + 1 for every positive integer t. Thus 
A (P 2 ) = A ( P 2 ) + 1 and A ( P 3 ) = A ( P 3 ) ' + 1. I n add i t i on , A ( P 4 ) = A ( P 4 ) + 1. For 
n > 5, however, 

X ( P N ) = A ( P n ) + 2 = 4, 

as we now show. Let P „ = ( « i , u 2 , . . . ,vn). Consider the subgraph of P N induced 
by the vertices vz (1 < i < 5), namely P 5 = (v\, v2, v3, v4, v5). The L(2, l ) - c o l o r i n g 
of P5 given in Figure 14.6 shows t h a t A(Ps) < 4. 

4 2 0 3 1 
o o o o o 
U i V2 v3 V4 V5 

Figure 14.6: A n L ( 2 , l ) - c o l o r ing of P5 

Since A ( P 4 ) = 3, i t follows that A ( P 5 ) > 3. Suppose t h a t A ( P 5 ) = 3. T h e n there 
is an L ( 2 , l ) - co lor ing c of P5 using the colors 0, 1, 2, 3. E i ther c o r e assigns the 
color 0 or 1 to w 3 . Suppose that c assigns 0 or 1 t o 1/3. I f c(v3) = 0, then we may 
assume t h a t c(v2) = 2 and c (v 4 ) = 3. T h e n c(v\) = 0, which is impossible. Hence 
c(f j 3 ) = 1. However then, at most one of v\ and i>4 is colored 3, which is impossible. 
Therefore, A ( P 5 ) = 4 . which implies by Theorem 14.6 t h a t A ( P n ) = 4 for n > 5. 

B y Theorem 14.6, A + 1 < A(T) < A + 2 for every tree T w i t h m a x i m u m degree 
A . I f T has order n , then A < n — 1 and so A(T) < (n — 1) + 2 = n + 1 for every 
tree T of order n. However, i f A = n — 1, then T is a star and A (T ) = A + 1 < n. 
Therefore, for every tree T of order n, X(T) < n. I n fact, A(G) < n for every 
b i p a r t i t e graph G of order n, which follows from a more general upper bound of 
Griggs and Yeh [83] for the L-span of a graph . 
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T h e o r e m 14.7 If G is a graph of order n, then 

KG)<n + X(G)-2. 

P r o o f . Suppose t h a t X(G) = k. Then V(G) can be par t i t i oned into k independent 
sets VUV2, ...,Vk, where \V,\ = n t for 1 < i < k. Assign the colors 0 , 1 , 2 , . . . , m — 1 
to the vertices of V\ and for 2 < i < k, assign the colors 

ni +n2 + • • • + n t _ ! + (i - 1), 
n i + n2 H h n * _ i + i , 

ni + n2 H + + ( i - 2), 

to the vertices of V,. Since this is an L(2, l ) - c o l o r i n g of G, i t follows that 

A(G) < n + k - 2, 

as desired. 

A n immediate consequence of Theorem 14.7 is the fol lowing. 

C o r o l l a r y 14.8 If G is a complete k-partite graph of order n, where k>2, then 

A(G) =n + k-2. 

P r o o f . Let G be a complete /c-partite graph w i t h par t i t e sets Vi,V2,..., Vk. By 
Theorem 14.7, A(G) < n + k - 2. Let c be an L(2, l ) - c o l o r ing of G w i t h c-span 
A(G) using colors f rom the set S = { 0 , 1 , . . . , A ( G ) } and let at be the largest color 
assigned to a vertex of Vi ( 1 < i < k). Since every two d is t inct vertices of G are 
either adjacent or at distance 2. i t follows t h a t c must assign d i s t inc t colors to al l 
n vertices of G. Furthermore , since every two vertices of G belonging to different 
par t i t e sets are adjacent, i t follows t h a t no vertex of G can be colored at + 1 for 
any i (1 < i < k). Hence there are k - 1 colors of S t h a t cannot be assigned to 
any vertex of G, which implies t h a t the largest color that c can assign to a vertex 
of G is at least (n - 1) + (k - 1) = n + k - 2 and so A(G) > n + k - 2. Therefore, 
A(G) = n + A: - 2. . 

W h i l e we have already noted that A(G) > A + l for every g raph G w i t h m a x i m u m 
degree A , many of the upper bounds for A(G) have also been expressed in terms of 
A . For example, Griggs and Yeh [83] obtained the fol lowing. 

T h e o r e m 14.9 If G is a graph with maximum degree A , then ^ 

A(G) < A 2 + 2 A . 

P r o o f . For a given sequence vx, v2,..., vn o f the vertices of G, we now conduct a 
greedy L ( 2 , l ) - co lor ing c of G. We begin by defining c{v{) = 0. For each vertex u« 
(2 < i < n), at most A vertices of G are adjacent t o vt and at most A 2 - A vertices 
of G are at distance 2 f rom v,. Hence when assigning a color to Vi, i f a vertex Vj 
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adjacent to Vi precedes vl i n the sequence, then we must avoid assigning vl any of 
the three colors C(VJ) - 1, c(v3), C(VJ) + 1; while i f a vertex v3 is at distance 2 f r o m 
Vi and precedes t>< i n the sequence, then we must avoid assigning Vi the color c(vj). 
Therefore, there are at most 3 A + ( A 2 - A ) = A 2 + 2 A colors to be avoided when 
coloring any vertex vt (2 < t < n ) . Hence at least one of the A 2 + 2 A + 1 colors 
0 , 1 . 2 , . . . , A 2 + 2 A is available for vt and so A(G) < A 2 + 2 A . • 

Griggs and Yeh [83] also showed t h a t i f i f a graph G has diameter 2, then the 
bound A 2 + 2 A for A(G) i n Theorem 14.9 can be improved. 

T h e o r e m 14.10 If G is a connected graph of diameter 2 with A ( G ) = A , then 

A(G) < A 2 . 

P r o o f . I f A = 2, then G is either P 3 , C 4 , or C5. The L ( 2 , l ) -co lor ings of these 
three graphs i n Figure 14.7 show t h a t A(G) < 4 for each such graph G. Hence we 
can now assume that A > 3. Suppose t h a t the order of G is n . We consider two 
cases for A , according t o whether A is large or smal l in comparison w i t h n. 

2 0 3 
o o o 

Figure 14.7: L{2, l ) - co lor ings of the three graphs G 
w i t h A ( G ) = d iam(G) = 2 

Case 1. A > (n - l ) / 2 . Since G is neither a cycle nor a complete graph , i t 
follows f rom Brooks ' theorem (Theorem 7.12) that x(G) < A . B y Theorem 14.7, 

A(G) < n + X(G) - 2 < (2A + 1) + A - 2 
= 3 A - 1 < A 2 , 

the final inequal i ty follows because A > 3. 

Case 2. A < (n - 2 ) / 2 . Therefore, 5(G) > n / 2 . B y Coro l lary 3.8, G is 
H a m i l t o n i a n and so contains a H a m i l t o n i a n p a t h P = (vi, v2,.. •, vn). Define a 
coloring c on G by c(vt) = i - 1 for 1 < i < n. Since every two vertices of G w i t h 
consecutive colors are adjacent in G, these vertices are not adjacent in G. Thus c is 
an L ( f , l ) - c o l o r ing of G and the c-span is n - 1, which implies t h a t A(G) < n - 1. 

Now, for each vertex v of G, at most A vertices are adjacent t o v and at most 
A 2 - A vertices are at distance 2 f rom v. Since the diameter of G is 2, a l l vertices 
of G are w i t h i n distance 2 of v and so 

? 2 < 1 + A + ( A 2 - A ) = A 2 + 1. 
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Therefore, A(G) < n - 1 < A 2 . B 

T h e proof of the preceding theorem shows t h a t for a connected graph G of order 
n , d iameter 2, and m a x i m u m degree A , the bound A 2 for A(G) can only be attained 
when A = 2 (which occurs for C 4 and G 5 ) or when A > 3 and n = A 2 + 1 , which can 
only occur, by a theorem due to A l a n Hof fman and Robert Singleton [106], when 
A = 3 or A = 7, or possibly when A = 57. W h e n A = 3, there is only one such 
graph , namely the Petersen graph (see Exercise 12). W h e n A = 7, there is also only 
one such graph , called the H o f f m a n - S i n g l e t o n g r a p h . W h e n A ^ { 2 , 3 , 7 } , i t i s 

k n o w n t h a t there is no g raph of diameter 2 and A 2 + 1 except possibly when A = 57 
(see [106]). The mysterious s i tuat i on surrounding the existence or non-existence of a 
graph of diameter 2, m a x i m u m degree 57, and order 57 2 + 1 has never been resolved. 
Because d i a m ( G ) = 2, every L ( 2 , l ) - c o l o r ing of G must assign d i s t inc t colors to the 
vertices of G and so A(G) > n - 1 = A 2 . However, by Theorem 14.10, A(G) < A 2 . 
Thus A(G) can equal A 2 only when A e {2 , 3, 7} or possibly when A = 57. 

Griggs and Yeh [83] also described a class of graphs G w i t h m a x i m u m degree 
A for which A(G) = A 2 — A . These are the incidence graphs of finite projective 
planes. A f inite p r o j e c t i v e p l a n e of order n > 2 is a set of n2 +n+1 objects called 
points and a set of n 2 + n + 1 objects called lines such t h a t each po int is incident 
w i t h (lies on) n + 1 lines and each line is incident w i t h (contains) n + 1 points. I t is 
k n o w n t h a t i f n is a power of a pr ime, then a projective plane of order n exists. I n 
par t i cu lar , there is a project ive plane of order 2 (containing 2 2 + 2 + 1 = 7 points 
and 7 lines) and a project ive plane of order 3 (containing 13 points and 13 lines). 
The i n c i d e n c e g r a p h of a p r o j e c t i v e p l a n e of order n is a b i p a r t i t e graph G 
w i t h p a r t i t e sets Vi and V2 , where V\ is the set of points and V2 is the set of lines 
and uv is an edge of G i f one of u and v is a po int and the other is a line incident 
w i t h th is po int . Thus |Vi| = \V2\ — n2 + n + 1 and so G is an ( n + l ) -regular 
b i p a r t i t e graph of order 2 ( n 2 + n + 1). I n the simplest case, the project ive plane of 
order 2 (also called the F a n o p l a n e ) is a 3-regular graph of order 14. I n this case, 
the set of points can be denoted by 

Vi = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } 

and the set of lines by 

V2 = { (123) , (246), (145), (257), (347), (356), (167) } . 

The incidence graph of this project ive plane is shown in Figure 14.8. T h i s graph 
is called the H e a w o o d g r a p h and is a cubic g raph of smallest order (namely 14) 
having g i r t h 6. 

I n the incidence graph G of a project ive plane of order n , the distance between 
every two vertices of V. (i = 1,2) is 2 and the distance between t w o nonadjacent 
vertices belonging to different p a r t i t e sets is 3. Consequently, no two vertices of 
Vi or of V2 can be assigned the same color i n an L ( 2 , l ) - c o l o r ing of G. Th is says 
t h a t A(G) > n2 + n. Because there is an L(2, l ) - c o l o r ing of G using the colors 
0 , 1 , . . . , n2 + n, i t follows t h a t A(G) < n 2 + n and so A(G) = n2 + n. Since in this 
case A 2 - A = (n + l ) 2 - (n + 1) = n 2 + n , we have A(G) = A 2 - A . Therefore, 

(167) 1 

(257) 5 

Figure 14.8: T h e incidence graph of the projective plane of order 2 

the L -span of the incidence graph G o f the project ive plane of order 2 is 6. A n 
1 ( 2 , l ) - c o l o r i n g of th is g raph using the colors 0 , 1 , . . . , 6 is shown i n Figure 14.9. 

5 0 

0 5 

Figure 14.9: A n ¿ ( 2 , l ) - c o l o r i n g of the incidence g raph 
of the project ive plane of order 2 

I n the proof of Theorem 14.10 i t was shown t h a t i f A > 3 and A > ( n - l ) / 2 . 
then A(G) < A 2 . T h i s part i cu lar argument d i d not make use of the assumption t h a t 
G has diameter 2. Th is led Griggs and Yeh [83] to make the fol lowing conjecture. 

C o n j e c t u r e 14.11 If G is a graph with A ( G ) = A > 2, then A(G) < A 2 . 

I n 2008 Frédéric Havet , Bruce Reed, and Jean-Sébastien Sereni [98] established 

the fallowing. 

T h e o r e m 14.12 There exists a positive integer N such that for every graph G of 

maximum degree A > N, 
A(G) < A 2 . 


