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and so a(Gp) > k. Let S = {v;,,vj,,...,v;,} be an independent set of k Vertices
Gp such that jl <j2 <"'<jk:- ;i
Now let there be given a k-coloring of G, using the colors 1,2,...,k. We p,
replace each color i (1 < ¢ < k) by j;, arriving at a new k-coloring ¢ of G. Hence '(f)W
e!,nd y are two adjacent vertices of G, then z and y are assigned distinct colors j al_ g
Js, where 1 < r,s < k and r # s. Since v;,, V5, € 5, it follows that v; v;, ¢ ET(GH)
’ P

and so |jr — js| ¢ T. Hence c is a T-coloring of G. Since the largest color used in

is jx and s

Jk Sp=x(Gs)(k—1)+1,

it follows by (14.2) that

spr(G) < Gk =51 S [X(Gs)(k~-1)+1] -1
x(Gs)(k —1) < t(k — 1),

giving the desired result. .

We now show that the upper bound given in Theorem 14.4 for the T-span of
a graph is attainable. Suppose first that 7' = {0, 2, 4} and consider the graphs Cj,
and Cs. Then x(C3) = x(Cs) = 3 and |T| = 3. By Theorem 14.4, sp7-(C3) < 6 and
spr(Cs) < 6. Figure 14.4 shows T-colorings for these graphs with T-span_ﬁ. We
show for T' = {0, 2,4} that the T-span of Cj is, in fact, 6. Assume, to the contrary.
that spr(C3) = a, where a < 5. Then there exists a T-coloring of C3, where some:
vertex u of C'3 is colored 1 and the largest color assigned to a vertex v of Cs is
a+1<6. Since T = {0, 2,4}, either a = 2 or a = 4, and the color of the remaining

}erte? w of }C3 is of the same parity as either c¢(u) or ¢(v), which is impossible since
= {0,2,4}.

4 3

Figure 14.4: T-colorings of C3 and Cs
-~

An infinite class of graphs verifying the sharpness of the upper bound for spr(G)
stated in Theorem 14.4 consists of the complete graphs K, with 7' = {0,1,...,¢-1},
whe_re t € N. By Theorem 14.4, spp(K,) < t(n —1). Let VI(K,) = {v1,v2,...,%}
Assigning the color ¢(i — 1)+ 1 to v; for i = 1,2,...,n gives a T-coloring of Kn. If
spr(Ky) < t(n—1), then there is a T-coloring of K,, where the difference in colors of
two vertices is less than ¢. This, however, is impossible and so spr(Ky) = t(n—1)
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14.2 L(2,1)-Colorings

One of the early types of colorings inspired by the Channel Assignment Problem
occurred as a result of a communication to Jerrold Griggs by Fred Roberts, who
proposed using nonnegative integers to represent radio channels in order to study the
problem of optimally assigning radio channels to transmitters at certain locations.
As a result of this, Roger Yeh [191] in 1990 and then Griggs and Yeh [83] in 1992
introduced a coloring in which colors (nonnegative integers in this case) assigned to
the vertices of a graph depend not only on whether two vertices are adjacent but
also on whether two vertices are at distance 2.

For nonnegative integers h and k, an L(h, k)-coloring ¢ of a graph G is an

assignment of colors (nonnegative integers) to the vertices of G such that if u and

w are adjacent vertices of G, then |c(u) — ¢(w)| > h while if d(u,w) = 2, then
le(u) —c(w)| > k. No condition is placed on colors assigned to u and v if d(u, w) > 3.

. Hence an L(1,0)-coloring of a graph G is a proper coloring of G. As with T-

colorings, the major problems of interest with L(h, k)-colorings concern spans. For
given nonnegative integers h and k and an L(h, k)-coloring c of a graph G, the span
of ¢ (or the c-span of G) is max|c(u) — c(w)| over all pairs u,w of vertices of G,
which we denote by A i(c). That is,

M k(c) = max{|c(u) — c(w)| : u,w € V(G)}.
For given nonnegative integers h and k, the A\, x-number or L-span of G is
)\h,k(G) = min{)\h,k(c)}

where the minimum is taken over all L(h, k)-colorings ¢ of G. Most of the interest in
L(h, k)-colorings has been in the case where h = 2 and k = 1. Therefore, an L(2,1)-
coloring of a graph G (also called an L(2,1)-labeling by some) is an assignment
of colors (nonnegative integers, rather than the more typical positive integers) to
the vertices of G such that

(1) colors assigned to adjacent vertices must differ by at least 2,
(2) colors assigned to vertices at distance 2 must differ, and
(3) no restriction is placed on colors assigned to vertices at distance 3 or more.
For an L(2,1)-coloring ¢ of a graph G then, the c-span of G is
A2.1(c) = max{|e(u) — c(w)| : u,w € V(G)}.

For simplicity, the c-span Az1(c) of G is also denoted by A(c). The L-span or
Az 1-nymber Az 1(G) of G is therefore

A2.1(G) = min{A(c)},

where the minimum is taken over all L(2, 1)-colorings ¢ of G. Here too, many have
simplified the notation Az 1(G) to A(G). (Since A(G) is common notation for the
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edge—coqnecti_vity of a graph G, it is essential to know the context in which t};
-symbol is being used.) Therefore, in this context, A(G) is the smallest i 'hls
integer & for which there exists an L(2,1)-coloring ¢ : V(G) — {0,1 : k}pogl‘twe
we may always take 0 as the smallest color used in an L(2,1)- ring o & saut
G, it follows that A(G) is the smallest maximum color that c,a,n
coloring of G.

; We determlpe A(G) for the graph G of Figure 14.5(a). The coloring ¢ of G ;
Figure 14.5(b) is an L(2, 1)-coloring and so A(c) ='5. Hence AG) < 5. We ¢l -
tha’t A(G) = 5. Suppose that A(G) < 5. Let ¢ be an L2, 1)-colo;ing such tilm
/\.(c) = ,\(G).- We may assume that ¢’ uses some or all of the colors 0,1,2, 3 4
Since the vertices u,v, and w are mutually adjacent, these three vertices’ n’m;t 7b4.
colorec’i 0,2, and 4, say ¢'(u) = 0, ¢/(v) = 2, and d(w) = 4. Since ¢/(y) must diff; ¢
from ¢’(v) by at least 2, it follows that c(y) =0orc(y) = 4. However, u and wlaf;

at dlStallCe 2 fI om y, lIIlpllelg tha-t € # 0 a..lld C! y ?é 4 Ih. 1S a 1
y =
( ) ( ) ( ) S C()ntl‘&dlct on

COlOf‘ing of a graph

& 4

(a) (b)
Figure 14.5: A graph G with AG) =5
A family of graphs whose L-span is easy to determine are the stars.
Theorem 14.5  For every positive integer t, \(K; ) =t + 1.

Proqf. Since the result is immediate if t = 1, we may assume that ¢ > 2. The
coloring of K ; that assigns 0,1,...,t -1 to the ¢ end-vertices of Ky, and ¢ +1 to
the central vertex of Ky, is an L(2, 1)-coloring of Kyt Thus A(K; f,)’ <t+1.
Suppose that there is an L(2,1)-coloring of K 1,+ using colors in the set S =
{0,1, - .,t}. Since the order of K¢ ist+1 and diam(K, ;) = 2, it follows that for
each 1 € S, exactly one vertex of K 1,t 1s assigned the célor i. In particular, the
central vertex of K, is assigned a color J € 5. Because some end-vertex of ,K 1.t
must be colored j — 1 or j + 1, this coloring cannot be an L(2, 1)-coloring of K g
Hence we have a contradiction and s0 A(Kj)=¢t+1. , !'

The L-span of a tree with maximum degree A can only be one of two values.
Theorem 14.6 If T is a tree with A(T) = A > 1, then either

AT)=A+1 or M(T) =A+2.

occur in an L(2, 1hait
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‘ _' Proof. Suppose that the order of T is n. Because K a is a subgraph of T" and
© A(K1,a) = A + 1 by Theorem 14.5, it follows that A(T) > A + 1. We now show
[ that there exists an L(2, 1)-coloring of T" with colors from the set

S={0,1,...,A+2}

of A 4+ 3 colors. Denote T by T, and let v, be an end-vertex of T,,. Let T,,_; =
T, — vy and let v, be an end-vertex of T5,_;. We continue in this manner until we

| arrive at a trivial tree T consisting of the single vertex v;. Consider the sequence
L 11,v2,...,Un. We now give a greedy L(2, 1)-coloring of the vertices of T' with colors
- & from the set S. Assign the color 0 to v; and the color 2 to va. Suppose now that
& an L(2, 1)-coloring of the subtree T; of T induced by {vy,v2,...,v;} has been given,

* where 2 < i < n. We assign v;4; the smallest color from the set S so that an L(2, 1)-

§ coloring of the subtree T;4; of T induced by {vi,va,...,vi+1} results. From the
" manner in which the sequence v, vs, ..., v, was constructed, v;+1 is an end-vertex
. of T;+1 and so v+ is adjacent to exactly one vertex v; with 1 < j < i. The vertex
& y; is adjacent to at most A —1 vertices in the subtree T;. Hence v;4+1 can be assigned
= a color that differs from those assigned to at most A — 1 vertices and differs from
4 any color within 1 of the color assigned to v;. Hence at most (A —1)+3 = A +2
E '_; colors cannot be used to color v;41, leaving at least one available color in S to color
b Vitl- Thus )\(T) <A+2 ]

By Theorem 14.5, MK, ;) = A(K,.) + 1 for every positive integer ¢t. Thus

'_‘ MP) = A(P;) + 1 and A(P3) = A(P;) + 1. In addition, A(Py) = A(P,) + 1. For
n > 5, however,

MP,)=A(F)+2=4,

g as we now show. Let P, = (v1,v2,...,un). Consider the subgraph of P, induced
& by the vertices v; (1 < i < 5), namely Ps = (v1,v2,v3,v4,vs). The L(2,1)-coloring
- of Ps given in Figure 14.6 shows that A(Ps) < 4.

4 2 0 3 1
O O O - O
U1 vg v3 U4 Us

Figure 14.6: An L(2, 1)-coloring of P5

Since A(Py) = 3, it follows that A(Ps) > 3. Suppose that A(P5) = 3. Then there

. is an L(2,1)-coloring c of Ps using the colors 0, 1, 2, 3. Either ¢ or T assigns the
§  color 0 or 1 to v3. Suppose that ¢ assigns 0 or 1 to vz. If c(vs) = 0, then we may

assume that ¢(vz) = 2 and c(v4) = 3. Then c(v;) = 0, which is impossible. Hence
c(vz) = 1. However then, at most one of v; and vy is colored 3, which is impossible.
Therefore, A(Ps) = 4, which implies by Theorem 14.6 that A(P,) =4 for n > 5.

B¥ Theorem 14.6, A+1 < A(T) < A+ 2 for every tree T with maximum degree
A. If T has order n, then A <n—1andso A(T) < (n—1)+2 =n+1 for every
tree T of order n. However, if A =n — 1, then T is a star and \M(T) = A+ 1 < n.
Therefore, for every tree T' of order n, A(L) < n. In fact, A(G) < n for every
bipartite graph G of order n, which follows from a more general upper bound of
Griggs and Yeh [83] for the L-span of a graph.
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Theorem 14.7 If G is a graph of order n, then
AG) <n+x(G) -2

Proof. Suppose that ¥(G) = k. Then V(G) can be partitioned into k independent
sets V7, Vz,'. .+, Vi, where |V;| = n; for 1 <i < k. Assign the colors 0, LEB 5 e
to the vertices of V) and for 2 < i < k, assign the colors :

ni+ng 4o+ n1 + (- 1),
Ny + 7o F ik Ny

m+ng+- +ng 4 (6~ 2),
to the vertices of V;. Since this is an L(2, 1)-coloring of G, it follows that
MG)<n+k-2,
as desired.
| |

An immediate consequence of Theorem 14.7 is the following.
Corollary 14.8 If G is a complete k-partite graph of order n, where k > 2, then
AMG)=n+k-2.

Proof. Let G be a complete k-partite graph with partite sets Vi, Vo, View By
Theorem 14.7, A(G) < n + k — 2. Let ¢ be an L(2, 1)-coloring of G ,witlll c-span
A(Q) using colors from the set S = {0,1,..., A(G)} and let a; be the largest color
a§51gned to a vertex of V; (1 < ¢ < k). Since every two distinct vertices of G are
either adjacent or at distance 2, it follows that ¢ must assign distinct colors to all
n ve_rtices of G. Furthermore, since every two vertices of G belonging to different
partlFe sets are adjacent, it follows that no vertex of G' can be colored a; + 1 for
any i (1 <4 < k). Hence there are k — 1 colors of S that cannot be assigned to
any v'ertex of G, which implies that the largest color that ¢ can assign to a vertex
of G is at least (n — 1)+ (k— 1) =n + k — 2 and so A(G) > n + k — 2. Therefore
MG) = m+ k=2, .

While we have already noted that A(G) > A+1 for every graph G with maximum
degree A, many of the upper bounds for A(G) have also been expressed in terms of
A. For example, Griggs and Yeh [83] obtained the following.
Theorem 14.9 If G is a graph with mazimum degree A, then

AG) < A? £ 2A.

Proof. For a given sequence vy, vs, .. ., v, of the vertices of G, we now conduct &
greedy L(2,1)-coloring ¢ of G. We begin by defining ¢(v,) = 0. For each vertex vi
(2 <i < n), at most A vertices of G are adjacent to v; and at most A% — A vertices
of G are at distance 2 from v;. Hence when assigning a color to v, if a vertex vj
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adjacent to v; precedes v; in the sequence, then we must avoid assigning v; any of
the three colors e(v;) — 1, e(v;), c(v;) + 1; while if a vertex v; is at distance 2 from
v; and precedes v; in the sequence, then we must avoid assigning v; the color ¢(v;).
Therefore, there are at most 3A + (A2 — A) = A% 4 2A colors to be avoided when
coloring any vertex v; (2 < i < n). Hence at least one of the A? + 2A + 1 colors
0,1,2,...,A? + 2A is available for v; and so A(G) < A% £2A. n

Griggs and Yeh [83] also showed that if if a graph G has diameter 2, then the
bound A? + 2A for A(G) in Theorem 14.9 can be improved.

Theorem 14.10 If G is a connected graph of diameter 2 with A(G) = A, then
MG) € A%

Proof. If A = 2, then G is either P3, Cy, or C5. The L(2,1)-colorings of these
three graphs in Figure 14.7 show that A(G) < 4 for each such graph G. Hence we
can now assume that A > 3. Suppose that the order of G is n. We consider two
cases for A, according to whether A is large or small in comparison with n.

0

Figure 14.7: L(2, 1)-colorings of the three graphs G
with A(G) = diam(G) = 2

Case 1. A > (n—1)/2. Since G is neither a cycle nor a complete graph, it
follows from Brooks’ theorem (Theorem 7.12) that x(G) < A. By Theorem 14.7,

MG) £ n+x(G)-2<(2A+1)+A-2
= 3A-1<i

the final inequality follows because A > 3.

Case 2. A < (n — 2)/2. Therefore, 6§(G) > n/2. By Corollary 3.8, Gis
Hamiltonian and so contains a Hamiltonian path P = (vq,v2,...,vs). Define a
coloring ¢ on G by ¢(v;) =i — 1 for 1 <i < n. Since every two vertices of G with
consecutive colors are adjacent in G, these vertices are not adjacent in G. Thus ¢ is
an L(&, 1)-coloring of G and the ¢-span is n — 1, which implies that AMG)<n—-1.

Now, for each vertex v of G, at most A vertices are adjacent to v and at most
A? — A vertices are at distance 2 from v. Since the diameter of G is 2, all vertices

of G are within distance 2 of v and so

n<l+A+(A2-A)=A%+1
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Therefore, A(G) <n—1< A2, &

The proof of the preceding theorem shows that for a connected graph G of order
n, diameter 2, and maximum degree A, the bound A? for A(G) can only be attained
when A = 2 (which occurs for Cy and Cs) or when A > 3 and n = A%+1, which cap

only occur, by a theorem due to Alan Hoffman and Robert Singleton (106}, when =

A =3 or A =7, or possibly when A = 57. When A = 3, there is only one such
graph, namely the Petersen graph (see Exercise 12). When A = 7, there is also only
one such graph, called the Hoffman-Singleton graph. When A ¢ {2,3,7}, it is
known that there is no graph of diameter 2 and A% +1 except possibly when A = 57

(see [106]). The mysterious situation surrounding the existence or non-existence of 5 -

graph of diameter 2, maximum degree 57, and order 57°+1 has never been resolved.
Because diam(G) = 2, every L(2, 1)-coloring of G must assign distinct colors to the
vertices of G and so A(G) > n — 1 = A?. However, by Theorem 14.10, \(G) < A?,
Thus A(G) can equal A? only when A € {2,3, 7} or possibly when A = 57.

Griggs and Yeh [83] also described a class of graphs G with maximum degree
A for which A(G) = A% — A. These are the incidence graphs of finite projective
planes. A finite projective plane of order n > 2 is a set of n? +n+ 1 objects called
points and a set of n? + n + 1 objects called lines such that each point is incident
with (lies on) n+ 1 lines and each line is incident with (contains) n + 1 points. It is
known that if n is a power of a prime, then a projective plane of order n exists. In
particular, there is a projective plane of order 2 (containing 22 + 2 + 1 = 7 points
and 7 lines) and a projective plane of order 3 (containing 13 points and 13 lines).
The incidence graph of a projective plane of order n is a bipartite graph G
with partite sets V7 and V5 | where V) is the set of points and V5 is the set of lines
and wv is an edge of G if one of u and v is a point and the other is a line incident
with this point. Thus |Vi| = |V2] = n? + n'+ 1 and so G is an (n + 1)-regular
bipartite graph of order 2(n? + n + 1). In the simplest case, the projective plane of
order 2 (also called the Fano plane) is a 3-regular graph of order 14. In this case,
the set of points can be denoted by

Vi=1{1,2,3.4,5,6,7}
and the set of lines by
Va = {(123), (246), (145), (257), (347), (356), (167)}.

The incidence graph of this projective plane is shown in Figure 14.8. This graph
is called the Heawood graph and is a cubic graph of smallest order (namely 14)
having girth 6.

In the incidence graph G of a projective plane of order n, the distance between
every two vertices of V; (i = 1,2) is 2 and the distance between two nonadjacent
vertices belonging to different partite sets is 3. .Consequently, no two vertices of
V1 or of V5 can be assigned the same color in an L(2, 1)-coloring of G. This says
that A(G) > n? 4+ n. Because there is an L(2,1)-coloring of G using the colors
0,1,...,n% + n, it follows that A(G) < n? +n and so A(G) = n? + n. Since in this
case A2 — A = (n+1)? - (n + 1) = n? + n, we have A(G) = A? — A. Therefore,
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Figure 14.8: The incidence graph of the projective plane of order 2

the L-span of the incidence graph G of the projective plane of <_)rde-r 2 is 6. An
L(2, 1)-coloring of this graph using the colors 0,1, .. .,6 is shown in Figure 14.9.

Figure 14.9: An L(2, 1)-coloring of the incidence graph
of the projective plane of order 2

In the proof of Theorem 14.10 it was shown that if A > 3 and A > (n'— 11/2;
then A(G) < A?%. This particular argument did not make use of the e!.ssumpt-\on that
G has diameter 2. This led Griggs and Yeh [83] to make the following conjecture.

Conjecture 14.11 IfG isa graph with A(G) = A > 2, then NG) < A%

In 2008 Frédéric Havet, Bruce Reed, and Jean-Sébastien Sereni [98] established
the f8llowing.

Theorem 14.12 There ezists a positive integer N such that for every graph G of

mazimum degree A > N,
A(G) < A2



