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Section 3.1 The Hypercube 

The Hypercube 

I n this section, we define the hypercube and explain why i t is such a pow
erful network for parallel computat ion . A m o n g other things, we w i l l show 
how the hypercube can be used to simulate a l l of the networks discussed 
i n Chapters 1 and 2. I n fact, we w i l l f ind that the hypercube contains (or 
nearly contains) a l l of these networks as subgraphs. This mater ia l is b o t h 
surprising and i m p o r t a n t because i t demonstrates how al l of the parallel 
algorithms discussed thus far can be direct ly implemented on the hyper
cube w i t h o u t significantly affecting the number of processors or the running 
t ime . Hence, we w i l l quickly understand one of the main reasons why the 
hypercube is so powerful. 

We begin the section w i t h some definitions and a brief discussion of the 
hypercube's simplest properties i n Subsection 3.1.1. I n Subsection 3.1.2, 
we show that the hypercube is Hami l t on ian , and we explain the correspon
dence between Hami l ton ian cycles i n the hypercube and Gray codes. We 
also prove that any A^-node array (of any dimensionality) is a subgraph of 
the A^-node hypercube (assuming that A" is a power of 2). 

I n Subsection 3.1.3, we describe several embeddings of an (A" — l ) -node 
complete b inary tree i n an A^-node hypercube. A l though the (N — l ) -node 
complete b inary tree is not a subgraph of the Af-node hypercube, we w i l l 
f ind that a complete b inary tree can be simulated very efficiently on the 
hypercube. 

More generally, we w i l l show that the Af-node hypercube can efficiently 
simulate any binary tree i n Subsection 3.1.4. I n part icular , we w i l l show 
how to grow an arb i t rary M-node binary tree i n an on-line fashion i n an 
A'-node hypercube so t h a t neighboring nodes i n the tree are nearby i n 
the hypercube and so that at most 0(M/N + 1) tree nodes are mapped 
to each hypercube node w i t h high probabi l i ty . The analysis of the tree-
growing a lgor i thm involves an interesting relationship between one-error-
correcting codes and hypercubes that has numerous applications. We also 
define the hypercube of cliques i n Subsection 3.1.4 and prove that i t is 
computat ional ly equivalent to the hypercube. 

I n Subsection 3.1.5, we show how to efficiently simulate a mesh of trees 
on the hypercube. As a consequence, we w i l l f ind that al l of the algorithms 
described i n Chapter 2 can be implemented w i t h o u t significant slowdown 
on a hypercube of approximately the same size. 

We conclude i n Subsection 3.1.6 w i t h a brief survey of some related 
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Figure 3-1 The N-node hypercube for N = 2, 4, and 8. Two nodes are linked 
with an edge if and only if their strings differ in precisely one bit position. Di
mension 1 edges are shown in boldface. 

network containment and s imulat ion results for the hypercube. 

3.1 .1 D e f i n i t i o n s a n d P r o p e r t i e s 

The r-dimensional hypercube has N = 2r nodes and r 2 r ~ 1 edges. Each 
node corresponds to an r - b i t b inary s tr ing , and two nodes are l inked w i t h 
an edge i f and only i f their b inary strings differ in precisely one b i t . As a 
consequence, each node is incident to r = log N other nodes, one for each 
b i t posit ion. For example, we have drawn the hypercubes w i t h 2, 4, and 8 
nodes i n Figure 3-1. 

The edges of the hypercube can be natura l ly part i t i oned according 
to the dimensions that they traverse. I n part icular , an edge is called a 
dimension k edge i f i t l inks two nodes that differ i n the kth b i t posit ion. We 
w i l l use the notat ion uk to denote the neighbor of node u across dimension 
k i n the hypercube. I n part icular , given any binary s tr ing u = i t i • • • u i o s N , 
the s tr ing uk is the same as u except t h a t the kth b i t is complemented. 
More generally, we w i l l use the notat ion ulfc»>*»>-.*.} t Q denote the str ing 
formed by complementing the kxth, k2th, ..., and A; sth bits of u. For 
example, 0011010 2 = 0111010 and 0011010 { 3 ' 4 > = 0000010 i n a 128-node 
hypercube. 

The dimension k edges i n a hypercube form a perfect matching for each 
k, 1 < k < log N. (Recall tha t a perfect matching for an Af-node graph 
is a set of A^/2 edges that do not share any nodes.) Moreover, removal of 
the dimension k edges for any k < log A^ leaves two disjoint copies of an 
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y -node hypercube. Conversely, an TV-node hypercube can be constructed 
from two y -node hypercubes by s imply connecting the ith node of one y -
node hypercube to the ith node of the other for 0 < i < y . For example, 
see Figure 3-2. 

I n addit ion to a simple recursive structure, the hypercube also has 
many of the other nice properties t h a t we would like a network to have. 
I n part icular , i t has low diameter ( log iV) and high bisection w i d t h (N/2). 
The bound on the diameter is easily proved by observing that any two 
nodes u = uxu2 • • • u\ogN and v = VyD? • • • V\ogN are connected by the pa th 

« i « a • ' ' " l o g N —* Viu2 • • • n l o g N —> V i ^ 2 U 3 • • • " l o g N 

—»•••—» VlV2 • • • U i 0 g N-lU\ogN —> VXV2 • • • V\ogN. 

The bound on bisection w i d t h is established by showing that the smallest 
bisection consists of the edges i n a single dimension. The proof follows as 
a special case of Theorem 1.21 from Section 1.9. 

As an interesting aside, i t is w o r t h not ing t h a t a hypercube can be 
bisected by removing far fewer t h a n y nodes, even though y edges are 
required to bisect the A -node hypercube. For example, consider the p a r t i 
t i o n formed by removing all nodes w i t h size and p 2 t £ " | . ( T h e 

size, 
or weight, of a node i n the hypercube is the number of Is contained i n its 
binary string.) A simple calculation reveals t h a t removal of these nodes 
forms a bisection w i t h G (N/ \/log N) nodes, which is the best possible. 
The details of these and some related results are left t o the exercises (see 
Problems 3.3-3.7). 

I t is also w o r t h not ing that the hypercube possesses many symmetries. 
For example, i t is node and edge symmetric. I n other words, by just rela
bell ing nodes, we can map any node onto any other node, and any edge onto 
any other edge. More precisely, for any pair of edges (u, v) and (u1, v') i n an 
A-node hypercube H, there is an automorphism a of H such that o~(u) = u' 
and o(v) = v'. ( A n automorphism of a graph is a one-to-one mapping of 
the nodes to the nodes such that edges are mapped to edges.) I n fact, 
there are many such automorphisms. For example, let u = uxu2 • • • U\ogN, 
u' = u[u'2 • • • u [ o g N, k be the dimension of (u, v), and k' be the dimen
sion of (u1, v'). Then for any permutat ion n on { 1 , 2 , . . . , log A"} such that 
n(k') = k, we can define an automorphism a w i t h the desired property by 
setting 
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Figure 3-2 Construction of a four-dimensional hypercube (b) from two three-
dimensional hypercubes (a). Dashed edges form a matching between the two three-
dimensional cubes. 
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Figure 3-3 Two labellings of the 8-node hypercube. By relabelling appropriately, 
we could have mapped edge e = (000,001) to any position in the network. 

a(xxX2 • • - X ] o g N ) = 0 t l * ( i ) ®u[) | (xn(2) ©«*(2) © « 2 ) I " * I 

(aV(log/V) © ^ ( l c g A T ) © U\ogN)- (3-l) 

(Here and throughout Chapter 3, we use the notat ion a \ 8 t o denote 
the concatenation of a and B.) I t is a simple exercise to check that a 
is an automorphism of the hypercube w i t h the desired properties. (See 
Problem 3.10.) 

As an example, we have i l lustrated two labellings of the 8-node hyper
cube i n Figure 3-3. I n the example, we have mapped the edge (000,001) 
to edge (110,100) using the automorphism 

a(x1x2x3) = (xi © 1) I (x3 © 1) I x 2 . 

I n general, we can rearrange the dimensions of the edges i n any order that 
we want (by varying n) w i t h o u t altering the network. (See Problems 3 . 1 1 -
3.13.) We w i l l use such symmetries rout inely i n the chapter to s impli fy 
explanations. 

3.1 .2 C o n t a i n m e n t o f A r r a y s 

One of the most interesting properties of the A -node hypercube is tha t i t 
contains every A^-node array as a subgraph. This result holds true even 
for high-dimensional arrays and even i f wraparound edges are allowed. For 
example, the embedding of a 4 x 4 array i n a 16-node hypercube is shown 


