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Abstract- Minimizing the area of a circuit is an important problem in
the domain of Vel)' Large SCille Integration. We use a theoretical VISI
model to reduce this· problem to one of laying out a graph, where the
transistors and wires of the circuit are identified with the vertices and
edges of the graph. We give an algorithm that produces VISI layouts
for classes of graphs that have good separator theorems. We show in
particular that any planar graph of n vertices has an O(n Ig2n) area
layout and that any tree of n·vertices can be laid out in linear area. The
algorithm maintains a sparse representation for layouts that is based on
the well-known UNION-FIND data structure, and as a result, the running
time devoted to bookkeeping is nearly linear.

1. Introduction

The remarkable advance of very large scale integratcd (VLSI)
circuitry has sparked research into the design of algorithms suitable for
direct hardware implementation. To the computer theorist, VLSI
provides an attractive model of parallel computation for thrce reasons.
First of all, the number of components that can fit on a single chip is
large, and beyond that has been doubling every one to two years. It is
currently possible to place lOS components on a single chip, and it is
projected that this number will very likely grow to 10' or even lOS.
These large numbers make asymptotic analysis and other theoretical
tools applicable to this engineering discipline. Secondly, VLSI hard
ware expense can be related directly to the vcry mathematical and
geometric cost function of area. Unlike older technologies, the
components and interconnections between components are made out of
the same "stuff' in VLSI, and hence area is a unifonncost measure for
both. Finally, VLSI provides a model of parallel computation that
includes communication costs as well as operation counts. The cost of
communication is represented explicitly as the area of a fIXed-width
wire between t'"IO processors. In fact, interconnections can consume
most of the area of an integrated circuit chip. A major goal, therefore,
is to minimize the area required by particular interconnection schemes.
This paper excuoines the problem in an abstract setting: "Given a
graph, produce an area-efficient layout."

To illustrate the subtleties inherent in this problem, consider laying
out a complete binary tree of n = 2k-1 vertices. Figure 1 shows an
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Figure 1: An O(nIg n) layout ofa complete binan tree.

obvious solution that requires O(nlg n) area-O(n) acros~; the bottom
times O(Ig n) height Observe that as we ascend the tree from the
leaves to the ro<.t, the number of wires is halved from onl ~ level to the
next, but the lel:gth of the wires doubles. This means tha"" the amount
of wire devoted to each level of the tree is the same. 11e recurrence
that describes the area required by this layout is A(n). 1 fl r n - 1, and

A(n) =: 2A<ln/2J) + nl2

for n - 2k-1 wh ~re k > 1.

There is a m( Ire efficicnt solution to this cmbedding p! oblem. The
so-callcd H-lrel layout [17] shown in Figure 2 rcquires or:ly 0(11) area

Figure 2: Th elinear area H-lree layout ofacomplete binary tree.

in spite of the fa:t that relatively long wires are used towafils the root of
the trce. In this layout, the number of wires is halved from level to level
as we ascend to the root, but the length of the wires doubks only every
two levels. \\ hereas, the standard 0(11 19 n) layout UiCS just one
dimension for nJUting most of thc wires. the H-tree makes bcttcr use of
both spacial dir lensions. The recurrence describing the :rca required
by the H-tree i.i Inore complcx than the previous one because of its
nonlinear fonn: A(n) =: 1 for Il = 1, and

A(n) • 4 A(LnI4J) + 4v'A ([n/4]) + 1

for n =2°4 k_l where k ~ 1.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 6, 2009 at 10:06 from IEEE Xplore.  Restrictions apply.



This recurrence can be solved by taking the square root of both sides
of the equation, and rewriting it in terms of VA (n), the length of the
edge of the layout. The new recurrence is a simple divide-and-conquer
recurrence which has solution o(v'ii) for the edge of the layout.

The remainder of this paper is organized as follows. Sections 2
through 5 contain background material. that will be used in later
sections. Section 2 contains a formulation of the VLSI layout model,
and Section 3 gives the definition of a separator theorem. Some results
regarding the areas and aspect ratios of layouts are proved in Section 4.
In Section 5, an important nonlinear recurrence equation is solved.

Section 6 brings the disjoint ideas of the previous sections together by
using separator theorems to help construct VLSI layouts. Many
corollaries follow from this main result, and they are explored in
Section 7. In Section 8, an implementation of the layout algorit;hm is
presented which is based on the UNION-FIND algorithm analysed by
Tarjan [22]. It is shown that the time required for ma.intaining the
representation of a layout is nearly linear. Section 9 uses many of the
techniques from earlier sections to investigate a layout model in which
the vertices of a graph are constrained to lie on a line. Finally,
Section 10 tries t) place the work of this paper in proper P(~rspective.

2. The VLSI Model

Before presenting the VLSI model used in this paper, it is worthwhile
to examine some of the attribu~es of VLSI technologies. VLSI
components, wires and transistors, are constrained to lie in layers on a
wafer of silicon. Because the number of layers is small (usually under
six), the size of a VLSI chip can be measured by the total area of silicon
used-the layers contributing to the ability of wires to cross. Every
VLSI fabrication process has a natural metric, the minimum feature size
A, which is the width of the narrowest wire that can be manufactured.l

The smallest transistor that can be manufactured is a square with edge
Aand area A2. .Since a wire of length L consumes AL area, it is not
unusual for much of the area ofa chip to be consumed by wires.

Intuitively, the VLSI model should make one-to-one corres
pondences between edges in the graph and wires in the layout, and
between vertices in the graph and transistors in the layout. The
mapping between edges and wires seems straightforward enough, but
there are many issues to be resolved in establishing a correspondence
between vertices and transistors. An important one is that a vertex in a
graph may have large degree, and yet on an integrated circuit, an
arbitrarily large number of wires cannot come together at (' single point
There just isn't enough room. Another problem arises n·om the fact
that a transistor occupies area. What assumptions should be made
about the size and shape of that area?

In this paper, we resolve these difficulties by restricting lhe discussion
to classes ofgraphs with vertex degrees that are bounded by a constant,
and by further L'ssuming that vertices require only a constant area of
silicon. Although these constraints may seem severe at first, the results
of the paper are easily generalized to morc complex Jnodels. For

IMead and Con\IIY (16) in fact define A to be half the width of the narrowest
manufacturable will.
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example, there i; a simple transformation from an arbitrary graph to a
trivalent graph ~uch that each vertex of the original graph is a block of
the trivalent gra:>h. Another way that the model can be (xtended is to
allow several tra Isistors to be connected by a single wire. This is easily
accomodated b:' considering bipartite graphs-vertice~ in one set
represent transis:ors and those in the other represent wires.

Having resol"ed the graph-theoretic issues, we now tum to the
modeling of the layouts themselves. The VLSI model proposed here is
similar to that cf Thompson [23] in which wires have unit width and
only a constant number (two) may cross at a point. Vertices are placed
on a rectangulaJ grid so that each lies within a grid squarl~. Edges run

horizontally and vertically, one per grid square, except that an edge
running horizontally may cross one running verti~lly.2

Layouts that are designed with this model have the property that they
are sliceable. That is, a horizontal or vertical line can be used to bisect
the layout, the pieces can be moved apart, and the severed wires can be
reconnected to realize the original topology. Slicing can be used to
generate new layouts from old ones. For example, an edge can be
routed between· two vertices in a layout by slicing. (See Figure 3.)
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Figure 3: Two horizontal and two vertical slices are
more than sufficient to route an edge.

Make two horizontal and two vertical cuts through the layout to expose
the the vertices that are to be connected. (Actually, two slices in one
direction and one mtl)e other always suffice.) Separate the pieces by a
grid unit, reconnect the severed edges across the gaps, and run a new
edge through the gaps to connect the vertices. If the length of the
original layout was L and the width W, the new layout has length at
most L+2 and width at most W+2. It should be noticed that the slices
through the layout must be straight-a staircase cut may require the
pieces to be separated by more than a single grid unit for a new edge to
be routed.

3. Separator Theorems

Recently, Lipton and Tarjan [14] showed that any planar graph of n
vertices can be divided into two subgraphs of approximately the same
size by .removing only o(Vii) vertices. Since the subgraphs are

280 that wires do not change often from one layer to another. Jna:1Y wire-routing
programs use a Ma"hattan scheme in which all horizontally running wins are placed on
one layer and all vertically running wires on the another.
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themselves planar, this separator theorem provides a basis for exploiting
the divide-and-conquer paradigm [1]. We shall find it convenient to
alter the definition for· separator theorem that Lipton·and Tarjan give.
Whereas they bisect a graph by removing vertices, we shall remove
edges. Since we are principally concerned with classes of graphs with
bounded degree, the definition we give is equivalent except for the
values ofthe constants in the definition.

Dermition 1: Let S be a class of graphs closed under the
subgraph relation, that is, if G is an element of S, and G' is a
subgraph of G, then G' is also an element of S. An f(n)
separator theorem for S is a theorem ofthe following form.

There exist constants as and Cs where 0 < as S 1/2
and Cs > 0 such that if G is an n-vertex graph in S, then
by removing at most csf(n) edges, G can be parti
tioned into disjoint subgraphs G1 and G2 having an and
(l-a)n vertices respectively, where as S a S l-clS •3

The set of removed edges is called the cut set of the b'section.

This definition is adaquate for Lipton and Tarjan's Vi-separator
theorem because: the class ofplanar graphs is closed undcl the subgraph
relation. But there are many classes of graphs for wilich the same
divide-and-conquer approach works, yet the class is not closed under
the subgraph relation. The notion of separability can b:~ extended by
taking the closure of the original class of graphs with 'he subgraphs
postulated by the separator theorem. Using this int(:rpretation of
separability, it ~s easy to show [13] that the class of trees has a 1
separator theorem. (The class of trees is not closed under the subgraph
relation, althou.~h the class of forests of trees is.) 'Ve shall give
additional separ.itor theorems in Section 7.

4. Areas and Aspect Ratios

The size and shape ofa rectangle is uniquely determined by its length
L and its width ~ where we shall assume that L ~ W> O. But there is
another coordinate space for specifying sizes and shapes of rectangles
area and aspect ratio. Everyone is familiar with area and knows that the
area can be defined as the product L w: The aspect ratio a is defined as
the quantity L/~ which is·by this definition, less than or equal to one.
Given the area and aspect ratio of a rectangle,· its length and width are
given by L - VA/a and W - V'iiA.

Suppose a graph has a VLSI layout ofarea A and aspect ratio a. It is
natural to ask whether there are other layouts of the graph that have
different dimensions but similar area. The following theorem shows
that a long and skinny layout can be made into a square layout (aspect
ratio ofone) by paying only a constant factor increase in area.

Theorem 2: If the bounding rectangle of a given layout has
area A, then independent of its aspect ratio, there exists
topologically equivalent layout whose bounding rectangle is a
square ofarea at most 3A.

Prooj: Let the length and width of the original layout be integers L
and ~ If L < 3~ then a square with side L satisfies the :onstraints of
the theorem. Now suppose L ~ 3w: The layout can be sliced in several

3ntroughout this paper it is assumed without loss of generality !bat a is chosen to
pennit crn to evalua:te to an integral value. This assumption is preferr.!d over the use of
floor or ceiling functions because it will be useful. to identify the particular values of a
and because it makei the mathematical formulae more readable.

I I]S, gwr1f~

II m I

II I
I

Figure 4: A layout can be "folded" to fit into a square.

places and "foleed" like a roadmap with the severed wires connected
around the comers. Figure 4 shows a square with side ~ • lV31J in
which a rectangle has been folded. This rectangle i~ the longest
rectangle of wid th W that can be folded into the square, and so if we
can prove that tre·length of this rectangle is at least L, ther' we will have
demonstrated ttat the original layout can also be folded to fit in the
square.

Let k -lsfWJ be the number of pieces into which this longest
rectangle ofwid·h Whas been folded. The rectangle is melde up of two
long pieces and k-2 short pieces. Since L ~ 3W implie'; s~ 3W, the
short pieces mu it be at least sf3 grid units long, and the long pieces
must have length at least 2s/3. Thus the total length ,)f the folded
rectangle is at least (k-2) sf3 + 2(2s/3) - s(k+2)/3.

Because k is the largest number of pieces of width U' that can be
folded into the s:Iuare, it follows that k+l pieces ofwidth Wwill not fit
Therefore, the l('ngth s of the square must be strictly less than W(k+l),

which means

s S W(k+l)-1.

By definition of s, the quantity (s+1)2 must be strictly la~ger than 3A,
and hence

3LW S (s+1)2 - 1 - s(s+2).

Substituting for s,

3LW s s(W(k+l) - 1 + 2)
- s(W(k+l) + 1)
s sW(k+2)

since W ~ 1. Cancelling W from both sides and dividing by three yields
L s s(k+2)/3. But the righthand side of this inequality is the value that
we earlier demonstrated was less than or equal to the total length of the
folded rectangle. Thus L is less than this total length, which was to be
proved.4 [J

Can one always "unfold" a square layout to make it arbitrarily long
and skinny but not pay a large increase in area? The answer is no, and a
unit square layout provides the counterexample. If we insist that the
side of the square be large, the answer is still no. For example, we
showed in the introduction that an n-leaf complete binary tree can be
laid out in O(n) area. But in Section 9, we shall prove that the
minimum dimension of that area must have order at least Ig n. Thus to

41t should be mentioned that a worst case is achieved when a one-by- five rectangle •
folded into a three-hy-three square.
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(1)

achieve good upper bounds for layouts, it seems prudent to avoid those
that have small aspect ratios.

The tcchnique presented in Section 6 to construct·area-efficient
layouts recursivt~ly bisects rectangular areas. To avoid creating arbi
trarily long and skinny rectangles during the recursion, it is important
that the aspect ratios of the generated rectangles be bounded below by a
positive constant The next lemma sets forth conditio'IS whereby a
rectangle whose aspect ratio is so bounded can be bisected into two
rectangles whose: aspect ratios are similarly bounded.

Lemma 3: Let R be a rectangle with area A and aipect ratio
(1R' where (1R ~ (1 for some (1 in the range 0 < (1 S 1/2.
Suppose R is bisected parallel to its short .side into two
rectangles R1 and R2 whose areas Al and A2 are ~A 31d (I-~)A

for some ~ in the range a S ~. s 1-(1. Then the aspe:t ratios of
the subrectmgles are bounded below by a, that is, a

J
) ~ a and
'1

(1R
2
~ a.

Proof Without loss of generality, we considcr R1 only. The proof
may be bro~en. into two cases. If ~ ~ (1R' then the aspec~ ratio of R1"is
aR / ~. TIUS]; bounded below by a since (1 S aR implies that
a < (1 / ~ ::; C1R / .;. On the other hand if ~ < C1R' then the aspect ratio of
R1 is ~/C1R' But a bounds ~ from below, and hence

C1 < C1 / C1R S ~1(1R' 0

Suppose a square is divided into two rectangles so that the ratio of
the area of the smaller to the larger is at worst al(l-a), and then the
rectangles are themselves subdivided by at worst the same ratio ofareas,
and so forth. Lemma 3 says that if the bisection is always parallel to the
short side, then no rectangle is ever generated whose aspect ratio is
worse than (1. The div~de-and-conquer construction in Section 6 will

use this result.

5. A Nonlinear Recurrence

Suppose S is a class of graphs for which an f(n)-separator theorem
has been proved. In Section 6 we shall show how to layout any graph
in S. In this section, we investigate a nonlinear recurrence equation that
will be used to relate f<n) to the area of the layout

Let A (1) be a positive constan~ and let A(n) be defined on any
integer n ~ 2 by

A(n) = max (A(an)+A«I-a)n)
assasl-as

+ 2!(n)VA(an)+A«1-a)n) + f 2(n»

max (v'A(an)+A«l-a)n) + f(n»2,
assasl-as

for some 0 < as S 1/2.

Given a particular !(n), there are standard methods for solving such
a recurrence. We shall use a technique, however, that will enable us to
solve this recurrence for broad classes of j(n). We shall define a
simpler function B(n) which will be shown to have the property

A(n) S nB2(n) (2)

for all n. Then by providing bounds for B(n), it will be easy to use (2)

to bound A(n).
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We define B(n) as VA'(I) for n - 1, and as

B(n) - ,max (B(an) + [(n)/vn) (3)
as~asl-as .

tor n> 1. Pr(\perty (2) holds for n - 1 by the definition of B(1).
Making the inductive assumption that it holds for values 1ess than n,

A(n) S max (v'anB2(an)+(I-a)nBZ«I-a)n) + f(n)'Y
assasl-as

S max. (v'anB2(an) +(I-a)nB2(an) + !(n)'Y (4)
assasl-as

S max (v'nB2(cxn) + !(n»)'-
assasl-«s

S max Il (B(an) + f(n)/vny
asS«sl-«s

- nB2(n).

{jne (4) in this proof follows from the consideration 0.''' two cases. If
B(an} ~ B«l-a)n) for the value of a that realizes the nlaximum, then
(4) be derived from the previous line by straightforward substitution of
B(an) for B«(l-a)n). On the other hand, if B(an) < E«I-a)n), then
substitution of B«l-a)n) for B(an} followed by a change of variable

of1-a for a yields the same result

It remains to evaluate B(n) which, except for the maximization, is a
simple divide-and-conquer recurrence that can be solved by iteration.
Thus

B(n) fen) [(aIn) !(a102n)
• .. r:: + ..~ + va:a::n + ... + B(a10 2 ••• a,n) (5)

vn vaIn cx1a2n

where rs -lo81_a n; each value a!' 0.2' ••• , a, is the value of a that
realizes the max~um. at each stage of the iteration; and the product
0.10.2 ' •• a, -lin. Upper bounds for Equation (5) can be determined
on the basis of suitable assumptions about f(n). The upper bounds in

Table 1 were determined by evaluating this summation according to the

Table 1: Solutions ofRecurrence (1).

f(n) B(n) A(n)

O(nq), q < 1/2 0(1) e(n)

E;}(vnlgkn); k~O Q{Igk+ln) e(n tg2k+2n)

D(nq
), q> 1/2 t O(f(n)/vn) e(f2(n»

tSee text for an explanation of this entry.

indicated assumptions about j(n). The lower bounds for A(n) were
derived by defining a function C(n} whiCh is similar to B(n) but which
provides the bound A(n) ~ nC2(n).

To demonstrate the upper bound results for the third entry, it is
insufficient to assume only that f(n) == D(nq

) for some q> 1/2 as the
table implies. In addition the function j(n)/vn must be well-behaved
in the following ~nse.

Definition 4: A function g(n) is said to satisfy Regularity
Condition CI if there exist positive constants ci and PI such
that C

1
< 1, P

l
S 1/2, and g(fJ n) ::; c1g(n) for all sufficiently

large nand 311,8 in the range PI sfJ s I-fJr
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Making the a.~sumption that !(n)/'Vn satisfies Condition Cl with
III • as' we can now prove the third line of the table. For large n and

CIS sal S I-as' we have

~~ S c/~.
vOln n

and in general for each tenn in Equation (5)

!(a10 2 ••• 0kn) kf(n)
< C1 .. r:: ·"°1°2", akn - v n

Substituting th~,e tenns in Equation (5) gives die bound

. !(n) ( 2 )B(I.) S V"n 1 + c1+ c1 + ... + constat:t,

which is O(!(n)/V"n) since cI < 1. The constant arises frt)m the finite
number of vah les that are not sufficiently large acCOl ding to the
regularity condition.

We have jus: shown that the third entry in the ta ble holds if
[(n)/'Vn satisfes Condition CI. What can be deduced from a weaker
assumption? Suppose, for example, that we only iSsume that
[(n)/'Vn is monotonically nondecreasing, that is

f(an) f(n)
-- < --,va:n - V"n

for all n~ 2 and all ° in the range as S a S I-a. Since there are only
O(lg n) tenns in the summation (5) it follows that
B(n) = O«!(n)lgn)/V"n) and A(n). O(j2(n)lin). A factor oflg2n
in area is paid because monotonicity is a weaker constraint on the well
behavedness of j(n)/V"n than is regularity Condition Cl.

The layout construction of the following section will need to assume
that A(n) is itself well-behaved according to a different regularity
condition.

Definition 5: A function g(n) is said to satisfy regularity
Condition C2 if there exist positive constants c2 and P2 such
that fJ

2
< 1/2 and the g(fln) ~ c2g(n) for all n ~ 2 and for all fl

in the range fJ2 S PS I-P2'

The qualification "for all n ~ 2" in this definition seems to be stronger
than the phrase "for all sufficiently large nn which· was used in the
definition of Regularity Condition CI. If all the values of g(n) are
positive, however, the two qualifications are equivalent, though the
values for the constants may be different.

Condition C2 is always satisfied by the solutions of A(n) shown in the
first two lines of Table 1, but not necessarily by that in the third line.
To guarantee that A (n) satisfies Condition C2 in this instance, it is
sufficient to assume that f(n) itself satisfies Condition C2 in addition to
the previous assumption that j(ll)/'Vn satisfies Cl.

The reader sh·Juld be aware that most of the functions arising from a
separator theore~.n will indeed satisfy these regularity conditions. As an
example, the conditions are satisfied by all functions of the form
cnqlgkn for COn-itants c, q, and k such that c and q are pO'itive. Similar
regularity conditions are assumed elsewhere in the litera.ture (e.g. [1],
(4], and [3]) in (trder to determine the asymptotic behavior of general
complexity func ions.
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6. Area-Efficient Layout Construction

Area-efficient layouts can be obtained through the use of the divide.
and-conquer paradigm. This section presents a construction which
takes a graph and divides it into two subgraphs which are recursively
embedded. The two sublayouts are then sliced to expose the vertices
with edges in the cut set and then those edges are routed as described in
S«tion2. .

Theorem 6: Let S be a class of graphs for which an f(n)
separator theorem has been proved, and let as and cs be the
constants postulated by the separator theorem. If A (n), which
is defined by A(n) • IIcs

2 for n • 1, and

A(n). max (VA(all)+A«I-a)n) +!(n»)'-, (6)
°ssClsl-os

for n > 1, satisfies Regularity Condition C2 with c2 • as and
P2· as' then any n-vertex graph Gin S can be embedded in
any rectangle whose area is at least

As(n) • (4cs2/as) A (n), (7)

and whose aspect ratio is at worst as's

Proof Let G be an n-vertex graph in S. The following recursive
construction shows how to embed G in a rectangle R whcse aspect ratio
(1R is at most as and whose area is As(n). Without los~ of generality,
view rectangle R so that the longer side which has length

L(R) • " As(n)1aR is parallel to the horizontal axis, alld so that the
shorter side whkh has length W(R) - "aR As(n) is vertical.

Step O. Initial condition. If n - 1 then the graph G j) just a single
vertex. Rectangle R, which has area As(I). must contair a grid square
because each di-nension of R is at least two, a fact that is ~asily verified.
Thus the theorem is true for the initial condition by sjm~ ly embcdding
the single verte}: in the grid quad and returning this layout as the result
of the construct.on.

Step 1. Partiaon. Using the f(n)-separator theorcm, dividc G into
two disjoint subgraphs G} and G2 which have 0GIl and (l-aG)n vertices
respectively, wt.ere as S aGS I-as. The number of ehges in the cut
set is at most cs.f(n).

Step 2. Solv~ the subproblenls. Remembering that ,·cctangle R is
oricnted with jts longer side horizontal. definc Ro t( be a similar
rectangle to R that has area As(oGIl)+As«l-aG)n) and s ts in the lower

left corner of R. (See Figure 5.) Apply Lemma 3 with

~ • A(aGn) • As(aGn)

A (aGn) + A «I-aG)n) As(aGn) + As«I-oG)n)

to divide Rointo two rectangles R1 and R2 whose areas are As(aGn) and
As«I-oG)n). lhe aspect ratios of R1 and R2 are bounded below by as

since

1bus the entrie~ for A(n) in Table 1 can be u~ed to evaluate .As( n) since these two
functions differ by at most a constant factor_
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Figure 5: The relationships among rectangles in Step 2.

~ L(RJ + 2cs !(n),

which follows from the fact that aR :s; 1 :s; IIas. The proof of
inequality (9) m!kes use of the fact that asS aR' whence

W(R) • v'aRAs(n)

~ V;; (v'As(aon)+As«l-ao)n) + 2cs!(n)/Vii;)

~ W(RJ + 2csf(n)v'aR las

which follows from the definition (6) of A(n) and Regularity Condition
C2. Now solve the subproblems by recursivel~' embedding G1 in R1 and
G2 ill R2•

Step 3. Marry the subproblems. For each of the cs!(n) edges in the set
of removed edges, make at most two horizontal and two vertical slices
through Ro to route the edge between the vertices incident to it as
shown previously in Figure 3. The length of this new layout is
L(RJ+2 csf(n) and its width is CW(RJ+2 csf(n). It remains to be
shown that this layout actually fits in rectangle R, viz.

To prove the~;e inequalities, we first use mathematical induction to
give an alterncltive definition of As(n) to that of equation (7):

As(n) == 4/us for n -1 and

A(n) == max (v'As(an)+A.s«I-a}n) +2csf(ll)/-va;Y.
as~;asl-Cls

for n > 1. We can now prove inequality (8) since

L(R) • V4S (n)/aR

== v'i.A.s(aGn)+As«I-ao)n»/aR + 2cs!(n)/VaS aR

L(R) ~ L(Ro>+ 2cs!(n),

eweR) ~ CW(Ro> + 2cs!(n).

(8)

(9)

7. Corollaries of the Main Result6

Upper bounds on the areas of VLSI layouts for many. graphs can be
immediately derived as consequences Theorem 6 and Table 1. Some of
these corollaries are enumerated in Table 2.

Table 2: Areas of graphs.

Class ofgraphs Area of layout

Treest O(n)

Planar graphs O(nl~n)

Outerplanar graphst O(n)

X-trees (n. 2~t O(n)

k-dimensional meshes (k > 2)t O(n2- 2/ k)

Graphs ofgenus k (k > 0) o(k?- nIg2n)
k

O(if/lgn)Shuffle-exchange (n _ 22 )

Cube-connected-cycles (n - k2~t O(lfllg2n)

tThese results are optimal to within a constant factor.

The separator theorems of Section 3 produce the first two results of
the table. Since the class of tree. graphs a I-separator theorem,. the first
line of Table 1 says that any tree or forest of trees has a layout whose

~ W(RJ + 2cs!(n).

We have shown that the layout actually fits within the bounds of
rectangle R which completes the proofofTheorem 6. [J

'The results repOl ted in this section on trees and planar graphs have 1teen discovered
independently by L. G. Valiant [24]. In fact.. Valiant was able to show tIu t trees could be
laid out in linear arl~ with no crossovers. R. W. Aoyd and 1. D. UJlmm (6) have also
used similar teehniqaes to show that any regular expression can be recogn zed by a linear
area circuit
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area is linear in the number of vertices. Lipton and Tarjan's
"V'n -separator theorem for planar graphs gives, according to Line 2 of
Table 1, an 0(nlg2n) area upper bound for the layout of any planar
graph of n vertices.

Outcrplanar graphs are triangulations of polygons, perhaps with
some edges removed. The author has been able to prove a I-separator
theorem for the class of outerplanar graphs, and thus these graphs have
linear area layouts. The separator theorem for trees is subsumed by this
result because every tree is an outerplanar graph.

The X-tree graph [19], which is shown in Figure 6, is a complete

Fit~re 6: The X-tree on 31 - 2s .. 1 verti~

binary tree with brother connections. One could attempt to layout this
graph by modit) ing the H-tree layout, ~ut proving that the class of x
trees has a Ig n-,eparator theorem is easier. Bisect the graph with a
vertical line that cuts at most (lg n)+1 edges. Each of the two halves can
be bisected similarly, once again cutting order at most (l~ n)+l edges,
where n is now~:he number of vertices in the half. Since 19 n - O(n f )

for any positive q, Line 1 of Table 1 shows that any. X-tre< can be laid
out in linear area.

A k-dimensiollal mesh is a graph in which each vertex is eonnected to

its nearest neighbor in each of k dimensions. Any class of k
dimensional me~;hes for some constant k has an easily ploved ,r.-l/k_

separator theore~n, and thus if k ~ 3, an n-vertex graph in the class has
an 0(~-2/k) are.1 layout by virtue ofLine-3 ofTable 1.

A graph of genus k is a graph that can be drawn with r. 0 crossovers
on a sphere tha~ has k handles attached. It has been sh )wn [2] that
there is a subse': of O(k"V'n) vertices whose removal yields a planar
graph. Applying Lipton and Tarjan's result gives a k~'ii-separator
theorem. Line 2 ofTable 1provides an upper bound ofo( t2 ntg2 n) for
the layout area (fan n-vertex graph ofgenus k.

In (9), Hoey and this author prOle a separator theorem for the
shuffle-exchange graph [20] on n - 22 vertices. Although the function
in this separator theorem does not satisfy the regularity conditions of
Section 5, the techniques of this paper do apply, and a O(n2/lgn) area
layout can be obtained. Recently, however, we have been able to
improve this result by showing that the O(n211g n) bound holds for all
shuffle-exchange graphs on n - 2k vertices. This new result, however,
does not the techniques in this paper.

Preparata and Vuillemin provide an O(n2/lg2n) VLSI layout for
their cube-connected-cycles network [18] on n. k2 k vertices. The
topology of this network, which is depicted in Figure 7, can be derived
from a boolean hypercube of2 k vertices by replacing etkh vertex with a
cycle of k vertices. This graph has a n/lg n-separator theorem since
removing all edges in one dimension of the original hypercube bisects
the graph, removal of those in ano$er bisects the halves, and so forth
for all k dimensions. The area that is given by Une 3 of Table 1 is the
same as the area of the layout given in [18).

Upper bounds in Table 2 that· are optimal to within a constant factor
are so designated in the table. The linear upper bounds are clearly
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Figure 7: The cube-connected-cycles network on 24 = 323 vertices.

optimal because every graph requires O(n) area. Th·~ other lower
bounds can be obtained from a result ofThompson [23]. Recall that the
minimum bisection width is the minimum number of edges that must be
cut to divide th ~ graph into a lnl2J-venex graph and c. rnl2l-vertex
graph. ThompsJn proves that the area of a graph has oreier at least the
square of the minimum bisection width of the graph. Ilis theoretical
argument is surprisingly similar to an analysis of printed circuit boards
given in [21].

Using another of Thompson's arguments, it can be ~lown that the
shuffie-exchang ~ graph and the cube-connectcd-cycle:i graph have
minimum bisection widths oforder at least illIg fl. This crises from the
fact that these networks can realize an arbitrary pennutation in O(lg n)
communication. steps. Thus if one of these graphs is partitioned into
two halves, it m Jst be possible to swap data items between the halves in
OOg n) time. Since there arc 0(11) data items to be sW:tpped, at least
order nllg n data cross between the halves during each jme unit, and
hence the minirlum bisection width of these graphs is t(n/lg n). The
area of any VLSI layout for these graphs must therefore have order at
least rt-11g2n. Thus the upper bound for the cube-co lnccted-cycles
graph is optim.l1, but there is a discrepancy in the b1unds for the
shume-cxchang~ graph.

There is also a discrepancy in the the upper and ]o~ er bounds for
planar graphs. lhe methods given above give only a linear area lower
bound conlparcd with the O(n Ig2 11) upp~r bound. The author believes

it more likely that the upper bound can be improved because he knows
of no planar graph that requires more than linear area, and in addition,
planar graphs appear to have considerably more structure than is
captured by the v'n-separator theorem alone.

8. An Efficient Implementation of the Layout
Algorithm

If a separator theorem can be proved for a class ofgraphs, Theorem 6
can be used to give an upper bound on the area of a VLSI layout for a
graph in the class. If: however, a separator algorithm is given for the
class ofgraphs, the proof ofTheorem 6 can be made into an algorithm
that can construct a VLSI layout for a graph in the class. In this section,
we provide an efficient implementation of this algorithm and analyze its
performance.

The layout algorithm uses the separator algorithm as a subroutine,
and therefore, has an execution time that depends upon the efficiencies
of both this subroutine and the bookkeeping necessary for the
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for 1l > 1. The t ound

S(I1) S anR (an) + (l-a)nR«l-a)n) + sen)

Sen) s n R(n),

which holds for thc case n = 1, also holds for all values of t. greater than

onc, as is shown by induction:

for n > 1 where ~ varies in the range as ~ a S I-as.

Bounds for .s (n) can be determined by the same technique used to
solvc Recurrence (1). Define R(n) = S(I) for n == 1, and

R(n) == max R (an) + s(n)/n.
Qs~a~l-Qs

sen) Sen)

O(nq), q< 1 e(n)

a(nlg in), k ~ 0 a{nlgk+1n)

O(nq
), q> It e(s(n»

7Tarjan comment:; that for all practical purposes. it is less than or equal to three.

Table 3: Tinle devoted to the separator subroutine.

tThe function s(:J)/nmust also satisfy Regularity Condition Cl.

separator algorithm for planar graphs also runs in linear t~me, and thus
only e(nlg n) iliae is needed for all of its executions.

The third lin e of the table· says that if the executioI:. time of the

separator subro'ltine is polynomially greater than linear, the first call,
which bisects the n-venex input graph, dominates th\~ subsequent
invocations on t le subgraphs.This analysis is based on the suppostion
that s(n)/n sati~fies regularity condition C1. When only monotonicity
is assumed, the lotal time is O(s(n)lg n».

Now that the costs due to the !(n)-separator algorithm have been
determined, we turn our attention to the bookkecpinf; required to
maintain the layout representation. The implementation proposed here
makes extensive use of the UNION-FIND algorithm analy~ed by Tarjan
[22]. This algorithm provides two instructions for the manipulation of
disjoint sets. Fr'1o(x) detennines the name of the unique set containing

element x, and UNION(X, Y,2) combines the elements of sets X and Y
into a new set ~~. The analysis in [22] shows that the tirr..e required to

execute n .UJ\ION operations intennixed with m > n FIND'S is
O(nl a(m,n» where a(m,n) is related to a functional inverse of

Ackennann's function and grows extremely slowly.7 We dO'not go into a

description of the algorithm here-a good one can be found in [I]-but
we shall use the UNION and FIND operations and the results ofTarjan's

analysis.

The key to the perfonnance of the layout procedure is the sparse
representation of layouts depicted in Figure 8. Each important point of
the layout is kept in two sets, an x-set which represents its x-coordinate

in the layout, and a y-set which represents its y-coordinate. The

important points in the layout are the vertices in the graph and the
endpoints of the horizontal and vertical edge segments. The UNION
FIND data structure maintains the relationship between a point and its
corresponding x- and y-sets. In Figure 8, this association is denoted by
the curved arcs. All the x- and y-sets for a layout are kept in linked lists.
The actual x·coordinate represented by a given x-set is therefore

determined by its distance from the head of the list. Pointers are used
to maintain relationships between points. For example, an edge
segment is represented by a pointer between its endpoints.

There are two important operations that must be performed during
the layout algorithm-the slicing of a layout in order to route an edge,
and the combining of two sublayouts into a single layout. Routing a
new edge between two vertices by slicing can be accompli~hed easily by
the following procedure. (See also Figure 9.)

(10)Sen) == S(an) + S«l-a)n) + sen)

production of a layout. The analysis in this section reflects this
dichotomy. The total time required to layout a graph of n vertices can
be expressed as the sum of (i) the total time devoted to the repeated
executions of the separator subroutine on the generated subgraphs plus
(ii) the time devoted to the management of the layout representation.
Later in this section, we shall present a fast bookkeeping scheme that is
based on the UNION-FIND algorithm analyzed by Tarjan [22]. But first,
we analyze the ,·mount of time required by the many executions of the
separator subroutine.

The layout prJcedure has no direct control over the effl:iency of the
separator subro1ltine. In fact, it might be the case that all the graph
bisections have been previously computed so that the ~ubroutine is
deceptively fast. For the analysis here, however, we asSllffiC that the
subroutine is in loked in-line, and that s(n) is the time required by the
separator subrolltine to bisect a graph of n vertices. We ca'l express the
relationship of Sen), the total amount of time required for all
executions of tlte subroutine during the laying out of (. graph of n
vertices, to sen) ')y the recurrence S(n) == 1 for n == 1, and

S max anR(an) + (l-a)nR«l-a)n) + sen)
as~Q~l-Qs

S max nR(an) + sen)
asSQsl-as

~ n R(n).

The results enumerated in Table 3 are derived by evaluating R(n) to
provide an upper bound on S(n), and using a similar function to bound

S(n) from below. Let us look at this table in greater detail.

The first line is a bit of a red herring. It says that if the execution
time of the separator subroutine is polynomially less than linear in the
number of vertices in the graph, then the contribution to the total
running time is linear. It should be apparent, however, that this

precondition is rarely satisfied in practice. After all, it takes the
subroutine at least linear time just to look at all of its input.

The second line of Table 3 is more usual-the subroutine requires
approximately linear time. In this case, the total time required by all

executions of the subroutine is only a logarithmic factor larger than the
time needed by the initial invocation of the separator subroutine on the
graph presented as input to the layout procedure. Tree graphs have a
linear-time I-separator algorithm that is not difficult to construct, and
thus according t) the table, the layout algorithm would spend a total of

8(n 19 n) time e {ecuting this as a subroutine when prodt.cing a layout
for an n-vertex tree. It is remarkable, but Lipton and ':aIjan's Vi·
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Fipre 8: The representation ofa layout.

1. For each (of the vertices, FIND the x-set and the y-set to which
it belongs.
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Figure 9: Routing an edge by slicing.
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Adjacent t:> these x- and y-sets in the linked lists, insert new x
and y-sets. effectively adding new slices of layout. Because
pointers represent the horizontal and vertical components of
previously routed edges, the components are not severed and
reconnectt~d as was described in Section 2. Instead, they
"stretch" t :utomatically.

2.

3.

The cost of the FIND'S cannot be determined without also knowing
the number of UNION'S that must be performed. The layout algorithm
uses the UNION operation in the following procedure which combines
two layouts into one. "(Without loss of generality, assume the layouts
are side-by-side in x.)

1. Append one linked list of x-sets to the other. This will
produce a list of x-sets for the combined layout such that all of
the x-coordinates of one sublayout lie to one side of all the x
coordinates of the other.

Add the new points for the edge to be rout<:d to the
appropriate x- and y·sets, and route the edge using pointers to
represent the edge components. Each new point helongs to
the x- and y-sets of the previous two steps.

Because we are only considering classes of graphs Hith bounded
vertex degree, ":he number of edges to be routed during the entire
course of execution of the layout procedure is linear in n, the number of

vertices in the input graph. The routing algorithm above is called once
for each edge, md hence total number of invocations is linear in n.
During each invocation, a constant number of FIND'S are ~xccuted, and

the rest of the work takes only constant time. Thus the' overall cost is
the time to execute a linear number of FIND'S p~us another tenn which
is linear. Since each FIND requires more than constant time, the linear
number of FIND'S dominates.

for n> 1, where a varies in the range as S a S I-as and a
R

"varies in
the range as ~ aR S I-as· This recurrence equation :s similar to

Recurrence (lO-~ which describes time devoted to the exe,;ution of the
separator subroutine. In fact, the same asymptotic resultc enumerated
in Table 3 are \alid when v' As(n) is substituted for 5(/.). Notice in
particular that if As(n) == O(n q

) for some q < 2, then U(n) :: e(n).

We now have a relationship between the area of the laycut As(n) and
the number of ~JNION's U(I1). But AS(I1) was determined. after all, by
/(n), the width of the separator. (Do not confuse /(n) "ith sen), the

2. Traverse both linked lists of y-sets, and UNION corresponding
y-sets to produce the linked list of y-sets for the the resultant
layout. That is, the kth y-set of final layout is obtained from
the UNION of the kth y-sets of the sublayouts.

The number of UNION'S varies each time two layouts are combined
because it is dfpendent upon the lengths of the linked lists that are
merged. If aR s the aspect ratio of R, the rectangle that contains the
combined layout, then the length of the linked list is v'aRAs(n) since

R is always bi~ected parallel to the short side. This leads to the
following recur:ence which describes the total number of UNION'S
executed by the layout algorithm: U(n) == 0 for n • 1, and

V(n) - U(ant + U«I-a)n) + v'aR As(n) (11)
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Figure 10: The construction ofa layout with collinear vertices.

The analysis of this construction is much easier than that of Section 6.
Since at most two vertical slices are made for each edge, the length of
the layout along the baseline is O(n). The height H(n) oflhe layout is a
constant for n - 1, and

r~ r 1 r, r r1 11 r"1

time required ':0 execute the separator subroutine.) Carrying this
relationship through, the number of UNION'S U(n) can b: expressed in
terms of fen), and then, using the fact that there are only a linear
number of FIND'S, the total time required by the management of the
layout represen tation can be determined. Table 4 enu:nerates these

Table 4: Time devoted to the 'management
of the layout representation.

fen) T(n)

O(nq
), q < It e(na(11,n»

e(n) e(nlgn)

1
csf(n)

ff
H(an)

JE'--- O(n) ---~

T
H(n)

1

tThe function f(n) must also be monotonic if f(n). O(n1l2
). H(n) - max H(an) + csf(n)

"ssasl-as
(12)

results, where 1 (n) is the time required by the bookkeeping to layout a
graph of n verti(es.

The first lin,~ of the table can be derived by observing that if
fen) = O(nq

) for q < 1 and is monotonic if fen) = n(v'n), then
As(n) =n(n 2q

) and, as was noticed earlier, U(n);IE e(n). Because the
total number of FIND'S is also linear in 11, the total time'required for
bookkeeping is O(n a(11,n».

The second line of the table gives the worst-case running time for the
bookkeeping which occurs when there is no better than an n-separator
theorem. In this case the area given by the layout procedure is 9(n2),

and the time to combine layouts is O(nIg n). Other bounds are readily
derived for cases when the growth of /(n) lies between nq for q < 1. and
n. For example, if f(n). n/lg n, then the time for bookkeeping is
O(nlglg n). Thus even if the separator algorithm is only marginally
good, the bookkeeping time is nearlY linear.

9. Layouts with Collinear Vertices8

The results of previous sections can be applied to models in which
different constraints are placed on the layouts. In this section, we
consider layouts in which vertices are required to lie on a straight line.
The results for this model can be easily generalized to other models
such as that in which all vertices are constrained to lie on the (convex)
perimeter of the layout. In this section, the techniques used in previous
sections are employed to provide area bounds for graphs based on
separator theorems for the graphs. In addition, some lower bound
results are presented on the optimality of these constructions for trees
and planar graphs.

Figure 10 shows how an /(n)-separator theorem can be used to
construct a layout with collinear vertices. First, the graph is bisected by
cutting at most csf(n) edges. Then layouts are recursively constructed
for the subgraphs and are placed side-by-side along the baseline.
Vertical slices are made through the layouts, and edges are routed in the
space above.

.8nte the upper ~ounds on the areas of trees and planar graphs represent joint work
WIth Jon L Bentley.
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for n > 1.

If/(n) is non.iecreasing, then H(n) - O(f(n)lgn) and the total area
As(n) is therefo1"e O(/(n) nlg n). In particular, if fen) -t)(Igkn), then
As(n) - O(nlgk.'ln). If fen) is D(nq) for some q> 0 and fen) satisfies
Regularity Concition CI, then H(n) - O(/(n» and As(n) - O(nf(n».

This means :hat planar graphs can be embedded on a line in
O(nv'n) area ,nd trees in O(nlg n) area. We now show that these
embeddings for trees and planar graphs are optimal to within a constant
factor. A simila:" result on trees was independently discov·~red by Brent
and Kung [5] in which they show that in any layout cf a complete
binary tree, the area devoted to wire must have order at leHst n19 n. The
approach here differs in that we show that the convex regj.)n containing
the layout must nave n(nlg II) area.

Lemma 7: For any complete-binary-tree layout ofn - 2k-l
collinear vertices where k ~ 0, there exists a perpendicular to
the baseline that lies between the leftmost and rightmost
vertices and cuts at least rk/21 edges and vertices.

Prooj: (Induction~) The lemma is easily satisfied for the initial cases
of n - 1 and n - 3. .For the general case, consider the four subtrees of
size 2k- 2_1. (See Figure 11.) Call the leaf that is leftmost on the

w

Figure 11: The construction in Lemma 7.

baseline v, and let w be $e rightmost leaf that is in a different subtree
from v. Choose.one of the two subtrees that contain neither v nor w.
The inductive hypothesis gives us a perpendicular that cuts f(k-2)/21
edges or vertices in the subtree. Since v and w are in different
halfplanes as determined by the perpendicular, the path between them
must be cut by the perpendicular. But this path is disjoint from the
subtree, which means that one more edge or vertex is cut for a total of
fk/21· []
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This lemma can be used to show that the minimum area of any
convex region containing a layout for a complete binary tree must be
D(nlg n). The length of the layout along the baseline must be D(n),
and as demonstrated by the previous construction, there is a point in
the layout DOg n) away from the baseline. This point and the two
points on· the limits of the baseiine determine· a triang·.e which has
D(nIg n) area. Since any convex region that contains these three points
must contain th ~ triangle, so must any convex region containing the
layout haveD(n ',g n) area.

Similarly, the. o(nvn) upper bound on the area for the layout of an
n-vertex planar graph is tight to within a constant factur because a
square mesh req Jires n(nvn) area. This can be shown bl considering
that the minimum bisection width of an n-vertex square mesh is vn.
Thus the perpen jicular to the baseline which divides the v·ertices on the
baseline into ln,'2Jand rn/2] vertices must cut vn edgeL The rest of
the proof follow: ~ that for the complete binary tree.

The lower bOl md results here generalize immediately to the model in
which all vertic(:s are constrained to lie on the perimeter of a convex
region. The permeter of the region must have length 0(11) si"nce there
are n vertices on it. The diameter of the region (the line segment which
realizes the greLtest distance between two points) must also be D(n)
since it is no les; than a factor of 'IT times the length of fle perimeter.
Applying the rrevious constructions to the layout, a1\d using the
diameter of the "egion as a baseline yields the same lower bound results
as before. In the case of the mesh, an exact bisection by a
perpendicular rrJay not be possible because some vertices rnay lie on the
perpendicular it~;elf. This situation can be avoided (see [2J]) by putting
a unit jog in th;~ perpendicular so that it looks like a 10 wercase aitch

without a left leg. The "perpendicular" can then be adjusted vertically
to bisect the graph. For the VLSI model used in' earlier sections, a
similar construction shows that minimum dimension of any layout of a
complete binary tree must be nOg n).

10. Perspective

Most wire routing programs for printed circuit boards have two parts.
First, the chips are placed on the printed circuit board. Then leaving
the chips fixed, wires are routed one by one using heuristic search
usually a variant on the path-finding algorithm attributed to Lee [12].
Most hardware designers concede that the first of these two steps is
harder. With a good placement, routing is easy; with a bad placement,
routing is impossible.

Most routers for integrated circuits use much the same approach.
Variations include polycells [15] and gate arrays. In the polycell
approach, the components are laid down in horizonal strips and the
channels between the strips are used for routing the wires. The
advantage is that the channel width is not fixed. If a channel has too

much congestion, extra tracks can be added easily in a manner
reminiscent of slicing. In the gate array approach, the channels run
both horizontally and vertically, but are a fixed .width determined in
advance. Typically, all cells are identical and are connected up· with a
final layer ofmetalization.

Recently, Johannsen [10] has introduced bristle blocks as a technique
for laying out integrated circuits. Rather than· using ,:;tandard wire
routing to connect cells in a design, the cells plug togethet. This would
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seem to mean that all cells must have the same width or ?itch. Instead,
however, the cells are designed with places to stretch so t'1at a cell with
smaller pitch can be adjusted to plug into a wider cell Wi th no routing
necessary. To e:,:tend this idea, places could be left in cells so that they
could be sliced when routing is required.

The idea of using divide-and-conquer to help with the general wire-'
routing problerr~ is not new. As far back as 1969, Gunt ler [8] gave a
heuristic procedure for arranging machines in a worksl op given the
frequency oftra'lel between machines. 'This algorithm, w}lich applies as
much to circuit placement as to machine placement, partitions the
transportation graph and places the subgraphs in subrectangles of the
original area. (runther's technique for partitioning is hi ~h]y heuristic,
and he commen ~s that it is the critical step. Another heul istic for graph
panitioning is given by Kernighan and Lin [11]. Among the applica
tions they mention is that of partitioning chips among printed circuit
boards so as to Dlinimize the connections between boards.

It is unlikely that a fast general panitioning algorithm will be found
because the problem of finding the minimum bisectic n width of a
graph is NP-cornp}cte [7]. In other words, graphs are hal d to partition.
This unfonunat·: situation brings up the question, Can ,'he divide-and
conquer approach used in this paper, which perfonns place/nell! and

routing simultaneously, compete with or enhance those techniques
already in use?"

The problem of partitioning can be aided by the techniques used in
this paper. The graphs of interconnections that arise in practice are
almost planar. By replacing each crossover in some drawing of the
graph with an artificial vertex that performs the crossover, Lipton and
Tarjan's separator algorithm for planar graphs can be applied.

A difficulty with applying the other techniques of this paperconcerns
constant factors in the areas of layouts. The model in Section 2 assumes
that each vertex fits into a square of the grid, and furthermore, that the
sizes of vertices and edges are comparable. For many practical
applications, the vertices are somewhat ;larger than the edges. A
solution to this problem is to design the cells represented by vertices
with places where they can .be sliced, and then use the largest
unsliceable portion of a cell as the granularity of the grid.

But there is another solution that does not require the cells to be
sliceable and yet does allow the granularity of the grid to be the width
ofa wire. The sizes of vertices must not vary widely, however. It works
by placing each vertex in a rectangle whose area is four times the area of
the vertex and which the layout algorithm is allov.'ed to slice.
Furthermore, slicing is allowed only in one direction. In the other
direction the sp2ce between or next to the layouts is used as a channel
for routing. Wt .en a slice is made through a vertex, the vertex is not
sliced, but a rece rd is kept of the segment that crosses over. When the
algorithm tennhlates, each edge that crosses over a vertex is routed
around the vertex in the unused area provided by the rectangle. The
author is currendy working on another approach based on weighted
separator theorelns where at each stage of the recursion, all edges that
are· to be routed at a higher level are brought to the perphery of the
current layout

In the case wllere vertices may be large and of widely ",arying sizes,
the problem be< :omes one of two-dimensional bin-packhlg with con
straints. This formulation of the problem seems to be the flost difficult,
but a good solution would have many applications.
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