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t i cu lar ly impor tant since i t means that a l l of the algorithms described i n 
Chapter 2 can be implemented on these networks w i t h only a constant 
factor loss i n efficiency. 

We conclude i n Subsection 3.2.4 w i t h a review of network containment 
results analogous to those proved for the hypercube in Subsections 3.1.2-
3.1.6. Among other things, we find t h a t the butterf ly , cube-connected-
cycles, and Benes network contain linear arrays and complete binary trees 
w i t h constant d i la t i on , but that any embedding of higher-dimensional ar­
rays requires logarithmic d i la t ion , which is the worst possible. We also 
prove a general result tha t every A^-node connected network contains an 
A^-node linear array w i t h d i la t ion 3. 

3.2.1 D e f i n i t i o n s a n d P r o p e r t i e s 

I n what follows, we describe the butter f ly , a variant of the butter f ly called 
the wrapped butterf ly , the cube-connected-cycles, and the Benes network. 
A l l four networks have a similar structure, and al l four are computat ional ly 
equivalent. 

T h e B u t t e r f l y 

The r-dimensional butter f ly has ( r + l ) 2 r nodes and r 2 r + 1 edges. The 
nodes correspond to pairs (w,i) where i is the level or dimension of the 
node (0 < i < r ) and w is an r - b i t b inary number that denotes the row of 
the node. T w o nodes (w,i) and {w',i') are l inked by an edge i f and only i f 
i' = i + 1 and either: 

1) w and w' are identical , or 

2) w and w' differ i n precisely the i'th b i t . 

I f w and w' are identical , the edge is said to be a straight edge. Otherwise, 
the edge is a cross edge. For example, see Figure 3-19. I n addi t ion , edges 
connecting nodes on levels i and i + 1 are said to be level i + 1 edges. 

The butter f ly and hypercube are quite similar i n structure. I n part ic ­
ular, the i t h node of the r-dimensional hypercube corresponds natura l ly 
to the ith row of the r-dimensional butterf ly , and an ith dimension edge 
(u,v) of the hypercube corresponds to cross edges ((u,i — l),(v,i)) and 
((v, i — 1), (u, i}) i n level i of the butterf ly . I n effect, the hypercube is just 
a folded up butter f ly (i.e., we can obta in a hypercube f rom a butter f ly by 
merging al l butter f ly nodes that are i n the same row and then removing 
the extra copy of each edge). Hence, any single step of N-node hypercube 
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calculation can be simulated i n log Af steps on an N(\ogN + l ) -node b u t ­
terfly by having the zth row of the butter f ly simulate the operation of the 
i t h node of the hypercube for each i. 

Because of the great s imi lar i ty between the but ter f ly and the hyper­
cube, the butter f ly has several nice properties. F i r s t , i t has a simple re­
cursive structure . For example, i t can be seen from Figure 3-19 that one 
r-dimensional but ter f ly contains two ( r — l ) -dirnensional butterfl ies as sub­
graphs. (Just remove the level 0 nodes of the r-dimensional butterf ly . 
Alternat ive ly , we could remove the level r nodes, as is done i n Figure 3-20, 
a lthough i t takes a l i t t l e longer to realize that the resulting graph is s imply 
two ( r — l ) -d imensional butterflies.) 

Another useful property of the r-dimensional butter f ly is tha t the level 
0 node in any row w is l inked to the level r node i n any row w' by a unique 
path of length r . The pa th traverses each level exactly once, using the 
cross edge from level i to level i + 1 i f and only i f w and w' differ i n the 
(i + l ) s t b i t . For example, see Figure 3-21. As a simple consequence of this 
fact, we can see that the A^-node butter f ly has diameter 0(\ogN). 

Like the hypercube, the but ter f ly also has a large bisection w i d t h . I n 
part icular , the bisection w i d t h of the A^-node butter f ly is Q(N/ log N). To 
construct a bisection of this size, s imply remove the cross edges f rom a 
single level. To show that Q(N/ log N) is a lower bound on the bisection 
w i d t h of the network, we can apply the same technique used to prove 
Theorem 1.21 i n Section 1.9. (For example, see Problem 3.89.) 

T h e W r a p p e d B u t t e r f l y 

For computat ional purposes, the first and last levels of the butter f ly are 
sometimes merged into a single level. I n part icular , node (w, 0) is merged 
into node (w, r ) for each w. The result is an r- level graph w i t h r 2 r nodes, 
each of degree 4. T w o nodes (w, i) and ( « / , i') are l inked by an edge i f and 
only i f i' = i + 1 mod r and either w = w' or w and w' differ i n the i ' t h b i t . 
Such edges are called level i' edges. To dist inguish between this structure 
and the unrnerged but ter f ly of Figure 3-19, we w i l l refer to the former as 
a wrapped butterfly and the latter as an ordinary butterfly. For example, a 
three-dimensional wrapped butter f ly is i l lustrated i n Figure 3-22. 

A t first glance, i t might seem t h a t the wraparound edges could make 
the wrapped butter f ly more powerful than the ordinary butter f ly from a 
computat ional point of view. This turns out not to be the case, however. 
I n fact, the relationship between the butter f ly and wrapped butter f ly is 
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level 0 level 1 level 2 level 3 level 4 level 5 level 6 

Figure 3-27 A three-dimensional Benes network. 

CCC also has diameter 6 ( l o g A r ) and bisection w i d t h &(N/\ogN). I n 
Subsection 3.2.3, we w i l l show t h a t b o t h have nearly the fu l l power of 
an iV-node hypercube. Throughout the discussion (and henceforth i n the 
t e x t ) , we w i l l treat the ordinary butterf ly , the wrapped butterf ly , and the 
CCC as essentially identical . 

T h e B e n e s N e t w o r k 

Many other variations of the butter f ly have also been proposed i n the 
l i terature , and we w i l l mention several of them i n Section 3.8. There is one 
addit ional var iat ion, however, called the Benes network, tha t is wor thy of 
special a t tent ion . The Benes network consists of back-to-back butterfl ies, 
as shown i n Figure 3-27. Overal l , the r-dimensional Benes network has 
2r + 1 levels, each w i t h 2 r nodes. The first and last r + 1 levels i n the 
network form an r-dimensional butterf ly . (The middle level of the Benes 
network is shared by these butterflies.) 

Not surprisingly, the Benes network is very similar to the butterf ly , i n 
terms of b o t h its computat ional power and its network structure . Indeed, 
at first glance, the network hardly seems w o r t h defining at a l l . 
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The reason for defining the Benes network is tha t i t is an excellent 
example of a rearrangeable network. A network w i t h N inputs and N 
outputs is said to be rearrangeable i f for any one-to-one mapping 7r of the 
inputs to the outputs , we can construct edge-disjoint paths i n the network 
l ink ing the ith input to the n(i)th ou tput for 1 < i < N. I n the case of the 
r-dimensional Benes network, we can have two inputs for each level 0 node 
and two outputs for every level 2r node, and s t i l l connect every permutat ion 
of inputs to outputs w i t h edge-disjoint paths. ( In this case, A^ = 2 r + 1 . ) 
For example, we i l lustrated the paths for the mapping (64531237) * n a n 

8-input Benes network in Figure 3-28. For ease of i l lus t ra t i on , each node 
of the Benes network is displayed as a 2 x 2 switch that connects its two 
incoming edges from the left to the two outgoing edges on the r ight i n one 
of two ways (crossing or straight through) . 

A quick inspection of Figure 3-28 reveals tha t every edge of the Benes 
network must be used to form the edge-disjoint paths connecting the inputs 
to the outputs , no matter what permutat ion is used. Under the c i rcum­
stances, i t seems extraordinary that we can find edge-disjoint paths for any 
permutat ion . Nevertheless, the result is true , and i t is even fa ir ly easy to 
prove, as we show in the following theorem. 

T H E O R E M 3.10 Given any one-to-one mapping TT of 2 r + 1 inputs to 
2 r + 1 outputs on an r-dimensional Benes network, there is a set of edge-
disjoint paths from the inputs to the outputs connecting input i to output 
*•(*) for 1 < i < 2 r + 1 . 

Proof . The proof is by induct ion on r. I f r = 1, the Benes network 
consists of a single node (i.e., a single 2 x 2 switch) and the result is obvi ­
ous. Hence, we assume that the result is true for an ( r — l ) -d imensional 
Benes network and t r y to establish the induct ion . 

The key to the induct ion is to observe that the middle 2r — 1 levels of 
an r-dimensional Benes network comprise two ( r — l ) -d imensional Benes 
networks. Hence, i t w i l l be sufficient to decide whether each path is to 
be routed through the upper sub-Benes network or the lower sub-Benes 
network. For example, the pa th from input 2 to ou tput 4 i n Figure 3-28 
is routed through the lower subnetwork, while the pa th from input 1 to 
output 6 is routed through the upper subnetwork. 

The only constraints that we have on whether paths use the upper 
or lower subnetworks are that paths from inputs 2i — 1 and 2i must use 
different subnetworks for 1 < i < 2r, and that paths to outputs 2i — 1 
and 2i must use different subnetworks. This is because each switch on 
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inputs outputs 

Figure 3-28 Edge-disjoint paths in a two-dimensional Benes network connect­
ing input i to output n(i) for 1 < i < 8, where n is the permutation (64531237) 
(i.e., 7r(l) = 6, TT(2) — 4, and so on). For clarity, each node of the Benes network 
is drawn as a 2 x 2 switch connecting the incoming pair of edges on the left to 
the outgoing edges on the right in one of two ways (crossing or straight through). 
In addition, the path from input 2 to output 4 is highlighted in order to illustrate 
what a particular path through the network looks like. 

the first and last levels of the Benes network has precisely one connection 
to each of the upper and lower subnetworks. Thus the paths sharing a 
node at the first level must go to different subnetworks, and the paths 
sharing a node at the last level must come from different subnetworks. 

Fortunately, these constraints are easy to satisfy. For example, the 
paths for the permutat ion i n Figure 3-28 were constructed as follows. 
F i r s t , we decided to route the pa th f rom input 1 to output 6 through 
the upper subnetwork. This meant that the path f rom input 3 to ou tput 
5 had to use the lower subnetwork (since the paths to outputs 5 and 6 
must use different subnetworks). This meant that the pa th from input 4 
to ou tput 8 had to use the upper subnetwork (since the paths f rom inputs 
3 and 4 must use different subnetworks). Cont inuing i n like fashion, we 
f ind that the pa th from input 8 to ou tput 7 uses the lower subnetwork, 
the pa th from input 7 to ou tput 3 uses the upper subnetwork, and that 
the pa th from input 2 to output 4 uses the lower subnetwork. The last 
choice on the pa th from i n p u t 2 closes the loop i n the constraint imposed 
by the i n i t i a l decision to route the pa th from input 1 through the upper 
subnetwork. To complete the first-level choices, we route the pa th from 
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Figure 3-29 The first step in finding the edge-disjoint paths for the permutation 
( ¿ 4 5 8 1 2 3 7 ) " ^he Paths 1—> 6, 4 —>8, 5—• 1, and 7 —+ 3 (labelled a, d, e, and 
g, above) are routed through the upper subnetwork, while the paths 2 —» 4, 3 —» 5, 
6 —+ 2, and 8 —• 7 (labelled b, c, f, and h, above) are routed through the lower 
subnetwork. At the recursive stage, the upper subnetwork routes the permutation 
(2143) a n d l°wer subnetwork routes the permutation (3124) ' 

input 5 to ou tput 1 through the upper subnetwork and the pa th from 
input 6 to ou tput 2 through the lower subnetwork. For example, these 
choices are i l lustrated i n Figure 3-29. We can now complete the rout ing 
of the paths by using induct ion on the upper and lower subnetworks. 

B u t how do we know for sure t h a t we can always assign each pa th 
to the upper or lower subnetwork i n a way that satisfies al l of the con­
straints? The answer is surprisingly easy. We start by rout ing the first 
path (e.g., the pa th from input 1) through the upper subnetwork. We 
next satisfy the constraint generated at the output by rout ing the cor­
responding pa th (e.g., the path to output 5 i n the previous example) 
through the lower subnetwork. We next satisfy the constraint newly 
generated at the i n p u t by rout ing the appropriate path (e.g., the pa th 
from input 4 i n the previous example) through the upper subnetwork. 
We keep on going back and for th through the network, satisfying con­
straints at the inputs by rout ing through the upper subnetwork and 
satisfying constraints at the outputs by rout ing through the lower sub­
network. Eventual ly we w i l l close the loop by rout ing a pa th through 
the lower subnetwork ( in response to an output constraint) tha t shares 
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an input switch w i t h the first p a t h that was routed. Since the first pa th 
that was routed used the upper subnetwork, the original input constraint 
is now also satisfied. I f any addit ional paths need to be routed, we con­
t inue as before, s tar t ing over again w i t h an arb i t rary unrouted path . I n 
this way, al l paths can be assigned to the upper or lower subnetworks 
w i t h o u t conflict (i.e., we can set the switches at the first and last levels 
of the Benes network so t h a t b o t h ends of every pa th are connected to 
the same subnetwork). The remainder of the pa th rout ing and switch 
sett ing is handled by induct ion i n the subnetworks. Hence, we have 
established the induct ive hypothesis, thereby proving the theorem. • 

I n the case that each level 0 node of the r-dimensional Benes network 
has jus t one i n p u t and each level 2r node has just one o u t p u t , then the 
paths from the inputs to the outputs can be constructed so as to be node-
disjoint (instead of only edge-disjoint). For example, we have i l lustrated 
node-disjoint paths through a two-dimensional Benes network for the per­
m u t a t i o n (J j 4 2) i n Figure 3-30. The proof of this result is identical to the 
proof of Theorem 3.10, except t h a t the paths f rom inputs i and i + 2r~1 

must use different subnetworks for 1 < i < 2r~~l (instead of the paths from 
inputs 2i — 1 and 2i) and the paths to outputs i and i + 2 r _ 1 must use 
different subnetworks for 1 < i < 2r~l. For example, the pa th f rom i n ­
put 1 to output 3 is routed through the upper subnetwork i n Figure 3-30, 
whereas the pa th from input 3 and the pa th to output 1 b o t h use the lower 
subnetwork. The remainder of the proof is left as an easy exercise. (See 
Problem 3.100.) For ease of reference, we state the result formal ly i n the 
following theorem. 

T H E O R E M 3.11 Given any one-to-one mapping of TT of'2"" inputs to 
2r outputs in an r-dimensional Benes network (one input per level 0 
node and one output per level 2r node), there is a set of node-disjoint 
paths from the inputs to the outputs connecting input i to output 7v(i) for 
l < i < 2 r . 

Theorems 3.10 and 3.11 have many i m p o r t a n t applications. For ex­
ample, we w i l l use them i n the next subsection to show that an iV-node 
but ter f ly can simulate any other iV-node bounded-degree network w i t h 
only 0(\ogN) slowdown. Of course, s imilar results are also true for the 
hypercube, as well as the other hypercubic networks that we w i l l study. 

The only drawback to Theorems 3.10 and 3.11 is tha t we do not know 
how to set the switches on-line. I n other words, each switch needs to be 
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inputs outputs 

Figure 3-30 Node-disjoint paths in a two-dimensional Benes network connect­
ing input i to output ir(i) for 1 < i < 4 where n is the permutation ( 3 ,4 2)- Edges 
contained in the paths are shaded. Because of the node-disjoint property of the 
paths, precisely one path passes through each switch in the network. 

to ld what to do by a global control t h a t has knowledge of the permutat i on 
being routed. We w i l l describe numerous methods for overcoming this 
di f f iculty i n Sections 3.4 and 3.5. For now, however, we w i l l be content 
w i t h the off-line nature of the result. 

3.2 .2 S i m u l a t i o n o f A r b i t r a r y N e t w o r k s • 

Like the hypercube, the butter f ly can simulate many networks w i t h o u t 
slowdown. I n fact, we w i l l discuss i n the next few subsections how al l of 
the algorithms described i n Chapters 1 and 2 can be implemented on a 
butter f ly w i t h only a constant factor loss i n efficiency. Before we do this , 
however, i t is useful to prove the fol lowing broader result: The A -node 
butter f ly can simulate any iV-node bounded-degree network w i t h only an 
0 ( l o g N) - fac tor slowdown. As a consequence, we w i l l have shown that 
the butter f ly is universal i n the sense that i t can simulate anything w i t h 
comparable hardware (i.e., processors and wires) w i t h only an 0(logN)-
factor slowdown (the least possible, i n general). Similar results also hold 
for the hypercube and other related networks. 

The key step i n showing that the butter f ly can efficiently simulate any 
other bounded-degree network is to show that the A -node butter f ly can 
route any A-packet permutat ion i n 0 ( l o g N) steps provided that the per­
mutat i on is known i n advance. I n other words, given an A^-node butter f ly 


