
1108 Chapter 35 Approximation Algorithms

Chapter outline
The first four sections of this chapter present some examples of polynomial-time
approximation algorithms for NP-complete problems, and the fifth section presents
a fully polynomial-time approximation scheme. Section 35.1 begins with a study
of the vertex-cover problem, an NP-complete minimization problem that has an
approximation algorithm with an approximation ratio of 2. Section 35.2 presents
an approximation algorithm with an approximation ratio of 2 for the case of the
traveling-salesman problem in which the cost function satisfies the triangle in-
equality. It also shows that without the triangle inequality, for any constant ! ! 1,
a !-approximation algorithm cannot exist unless P D NP. In Section 35.3, we
show how to use a greedy method as an effective approximation algorithm for the
set-covering problem, obtaining a covering whose cost is at worst a logarithmic
factor larger than the optimal cost. Section 35.4 presents two more approximation
algorithms. First we study the optimization version of 3-CNF satisfiability and
give a simple randomized algorithm that produces a solution with an expected ap-
proximation ratio of 8=7. Then we examine a weighted variant of the vertex-cover
problem and show how to use linear programming to develop a 2-approximation
algorithm. Finally, Section 35.5 presents a fully polynomial-time approximation
scheme for the subset-sum problem.

35.1 The vertex-cover problem

Section 34.5.2 defined the vertex-cover problem and proved it NP-complete. Recall
that a vertex cover of an undirected graph G D .V; E/ is a subset V 0 " V such
that if .u; "/ is an edge of G, then either u 2 V 0 or " 2 V 0 (or both). The size of a
vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover of minimum size in a given
undirected graph. We call such a vertex cover an optimal vertex cover. This prob-
lem is the optimization version of an NP-complete decision problem.

Even though we don’t know how to find an optimal vertex cover in a graph G
in polynomial time, we can efficiently find a vertex cover that is near-optimal.
The following approximation algorithm takes as input an undirected graph G and
returns a vertex cover whose size is guaranteed to be no more than twice the size
of an optimal vertex cover.

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; "/ be an arbitrary edge of E 0

5 C D C [fu; "g
6 remove from E 0 every edge incident on either u or "
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; "/ from E 0, adds its

1110 Chapter 35 Approximation Algorithms

endpoints u and " to C , and deletes all edges in E 0 that are covered by either u
or ". Finally, line 7 returns the vertex cover C . The running time of this algorithm
is O.V C E/, using adjacency lists to represent E 0.

Theorem 35.1
APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof We have already shown that APPROX-VERTEX-COVER runs in polyno-
mial time.

The set C of vertices that is returned by APPROX-VERTEX-COVER is a vertex
cover, since the algorithm loops until every edge in G:E has been covered by some
vertex in C .

To see that APPROX-VERTEX-COVER returns a vertex cover that is at most twice
the size of an optimal cover, let A denote the set of edges that line 4 of APPROX-
VERTEX-COVER picked. In order to cover the edges in A, any vertex cover—in
particular, an optimal cover C !—must include at least one endpoint of each edge
in A. No two edges in A share an endpoint, since once an edge is picked in line 4,
all other edges that are incident on its endpoints are deleted from E 0 in line 6. Thus,
no two edges in A are covered by the same vertex from C !, and we have the lower
bound
jC !j ! jAj (35.2)
on the size of an optimal vertex cover. Each execution of line 4 picks an edge for
which neither of its endpoints is already in C , yielding an upper bound (an exact
upper bound, in fact) on the size of the vertex cover returned:
jC j D 2 jAj : (35.3)
Combining equations (35.2) and (35.3), we obtain
jC j D 2 jAj

2 jC !j ;

thereby proving the theorem.
Let us reflect on this proof. At first, you might wonder how we can possibly

prove that the size of the vertex cover returned by APPROX-VERTEX-COVER is at
most twice the size of an optimal vertex cover, when we do not even know the size
of an optimal vertex cover. Instead of requiring that we know the exact size of an
optimal vertex cover, we rely on a lower bound on the size. As Exercise 35.1-2 asks
you to show, the set A of edges that line 4 of APPROX-VERTEX-COVER selects is
actually a maximal matching in the graph G. (A maximal matching is a matching
that is not a proper subset of any other matching.) The size of a maximal matching

35.2 The traveling-salesman problem 1111

is, as we argued in the proof of Theorem 35.1, a lower bound on the size of an
optimal vertex cover. The algorithm returns a vertex cover whose size is at most
twice the size of the maximal matching A. By relating the size of the solution
returned to the lower bound, we obtain our approximation ratio. We will use this
methodology in later sections as well.

Exercises
35.1-1
Give an example of a graph for which APPROX-VERTEX-COVER always yields a
suboptimal solution.
35.1-2
Prove that the set of edges picked in line 4 of APPROX-VERTEX-COVER forms a
maximal matching in the graph G.
35.1-3 ?
Professor Bündchen proposes the following heuristic to solve the vertex-cover
problem. Repeatedly select a vertex of highest degree, and remove all of its in-
cident edges. Give an example to show that the professor’s heuristic does not have
an approximation ratio of 2. (Hint: Try a bipartite graph with vertices of uniform
degree on the left and vertices of varying degree on the right.)
35.1-4
Give an efficient greedy algorithm that finds an optimal vertex cover for a tree in
linear time.
35.1-5
From the proof of Theorem 34.12, we know that the vertex-cover problem and the
NP-complete clique problem are complementary in the sense that an optimal vertex
cover is the complement of a maximum-size clique in the complement graph. Does
this relationship imply that there is a polynomial-time approximation algorithm
with a constant approximation ratio for the clique problem? Justify your answer.

35.2 The traveling-salesman problem

In the traveling-salesman problem introduced in Section 34.5.4, we are given a
complete undirected graph G D .V; E/ that has a nonnegative integer cost c.u; "/
associated with each edge .u; "/ 2 E, and we must find a hamiltonian cycle (a
tour) of G with minimum cost. As an extension of our notation, let c.A/ denote
the total cost of the edges in the subset A " E:

