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Abstract. The last 30 years have seen enormous progress in the design of
algorithms, but comparatively little of it has been put into practice, even
within academic laboratories. Indeed, the gap between theory and practice
has continuously widened over these years. Moreover, many of the recently
developed algorithms are very hard to characterize theoretically and, as ini-
tially described, suffer from large running-time coefficients. Thus the algo-
rithms and data structures community needs to return to implementation as
one of its principal standards of value; we call such an approach Experimental
Algorithmics.

Experimental Algorithmics studies algorithms and data structures by
joining experimental studies with the traditional theoretical analyses. Ex-
perimentation with algorithms and data structures is proving indispensable
in the assessment of heuristics for hard problems, in the characterization of
asymptotic behavior of complex algorithms, in the comparison of competing
designs for tractable problems, in the formulation of new conjectures, and in
the evaluation of optimization criteria in a multitude of applications. Exper-
imentation is also the key to the transfer of research results from paper to
production code, providing as it does a base of well-tested implementations.

We present our views on what is a suitable problem to investigate with this
approach, what is a suitable experimental setup, what lessons can be learned
from the empirical sciences, and what pitfalls await the experimentalist who
fails to heed these lessons. We illustrate our points with examples drawn
from our research on solutions for NP-hard problems and on comparisons of
algorithms for tractable problems, as well as from our experience as reviewer
and editor.

1. Introduction

Implementation, although perhaps not rigorous experimentation, was charac-
teristic of early work in algorithms and data structures. Donald Knuth insisted on
implementing every algorithm he designed and on conducting a rigorous analysis of
the resulting code (in the famous MIX assembly language) [25], while other pioneers
such as Floyd are remembered as much for practical “tricks” (e.g., the four-point
method to eliminate most points in an initial pass in the computation of a convex
hull, see, e.g. [36]) as for more theoretical contributions. Throughout the last 20
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years, Jon Bentley has demonstrated the value of implementation and testing of
algorithms, beginning with his text on writing efficient programs [3] and continuing
with his invaluable Programming Pearls columns in Communications of the ACM,
now collected in a new volume [6], and his Software Explorations columns in the
UNIX Review. Over 10 years ago, David Johnson, in whose work on optimiza-
tion for NP-hard problems experimentation took pride of place, started the annual
ACM/SIAM Symposium on Discrete Algorithms (SODA), which has sought, and
every year featured a few, experimental studies. It is only in the last few years,
however, that the algorithms community has shown signs of returning to implemen-
tation and testing as an integral part of algorithm development. Other than SODA,
publication outlets remained rare until the late nineties: the ORSA J. Computing
and Math. Programming have published several strong papers in the area, but the
standard journals in the algorithm community, such as the J. Algorithms, J. ACM,
SIAM J. Computing, and Algorithmica, as well as the more specialized journals in
computational geometry and other areas, have been slow to publish experimental
studies. (It should be noted that many strong experimental studies dedicated to
a particular application have appeared in publication outlets associated with the
application area; however, many of these studies ran tests to understand the data
or the model rather than to understand the algorithm.) The online ACM Journal
Experimental Algorithmics is dedicated to this area and is starting to publish a
respectable number of studies. The two workshops targeted at experimental work
in algorithms, the Workshop on Algorithm Engineering (WAE), held every late
summer in Europe, and the Workshop on Algorithm Engineering and Experiments
(ALENEX), held every January in the United States, are also attracting growing
numbers of submissions. Support for an experimental component in algorithms
research is growing among funding agencies as well. We may thus be poised for
a revival of experimentation as a research methodology in the development of al-
gorithms and data structures, a most welcome prospect, but also one that should
prompt some reflection.

As we contemplate approaches based on (or at least making extensive use of)
experimentation, we may want to reflect on the meanings of the two adjectives used
to denote such approaches. According to the Collegiate Webster, these adjectives
are defined as follows.

• experimental: 1. relating to or based on experience; 2. founded upon
experiments; 3. serving the ends of experimentation; 4. tentative.

• empirical: 1. relying on experience or observation alone; 2. based on ex-
perience or observation; 3. capable of being verified or disproved through
experience or observation.

Certainly, part (2) of the definition of “experimental” and parts (2) and (3) of the
definition of ‘empirical” capture much of what most of us would agree is essential
in the use of experiments. Unfortunately, both words have problematic connota-
tions: the “tentative” meaning of “experimental” and the exclusion of theory in
the first definition of “empirical.” A completely empirical approach may be per-
fectly suitable for a natural science, where the final arbiter is nature as revealed
to us through experiments and measurements and where the “laws of nature” can
at best be approximated through models, but it is incomplete in the artificial and
mathematically precise world of computing, where the behavior of most algorithms
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or data structures can, at least in principle, be characterized analytically. Nat-
ural scientists run experiments because they have no other way of learning from
nature. In contrast, algorithm designers run experiments mostly because an ana-
lytical characterization is too hard to achieve in practice. (Much the same is done
by computational scientists in physics, chemistry, and biology, but typically their
aim is to analyze new data or to compare the predictions given by a model with the
measurements made from nature, not to characterize the behavior of an algorithm.)
Algorithm designers are measuring the actual algorithm, not a model, and the re-
sults are not assessed against some gold standard (nature), but simply reported as
such or compared with other experiments of the same type. (Of course, we do also
build models and gauge them against the real system; typically, our models are
mathematical functions that characterize some aspect of the algorithm, such as its
asymptotic running time.)

Why this epistemological digression? Because it points to the necessity of
both learning from the natural sciences, where experimentation has been used for
centuries and where the methodology known as “the scientific method” has been
developed to optimize the use of experiments, and of staying aware of the funda-
mental difference between the natural sciences and computer science, since the goal
of experimentation in algorithmic work differs in important ways from that in the
natural sciences.

2. Background and Motivation

For over thirty years, the standard mode of theoretical analysis, and thus also
the main tool used to guide new designs, has been the asymptotic analysis (“big Oh”
and “big Theta”) of worst-case behavior (running time or quality of solution). The
asymptotic mode eliminates potentially confusing behavior on small instances due
to start-up costs and clearly shows the growth rate of the running time. The worst-
case (per operation or amortized) mode gives us clear bounds and also simplifies the
analysis by removing the need for any assumptions about the data. The resulting
presentation is easy to communicate and reasonably well understood, as well as
machine-independent. However, we pay a heavy price for these gains:

• The range of values in which the asymptotic behavior is clearly exhibited
(“asymptopia,” as it has been named by many authors) may include only
instance sizes that are well beyond any application. A typical example is
the algorithm of Fredman and Tarjan for minimum spanning trees. Its
asymptotic worst-case running time is O(|E|β(|E|, |V |))—where β(m, n)
is given by min{i | log(i) n ≤ m/n}, so that, in particular, β(n, n) is just
log∗ n. This bound is much better for dense graphs than that of Prim’s
algorithm, which is O(|E| log |V |), but experimentation [38] verifies that
the crossover point occurs for dense graphs with well over a billion edges—
beyond the size of any reasonable data set.

• In another facet of the same problem, the constants hidden in the asymp-
totic analysis may prevent any practical implementation from running to
completion, even if the growth rate is quite reasonable. An extreme exam-
ple of this problem is provided by the theory of graph minors: Robertson
and Seymour (see [42]) gave a cubic-time algorithm to determine whether
a given graph is a minor of another, but the proportionality constants are
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gigantic—on the order of 10150—and have not been substantially lowered
yet, making the algorithm entirely impractical.

• The worst-case behavior may be restricted to a very small subset of in-
stances and thus not be at all characteristic of instances encountered in
practice. A classic example here is the running time of the simplex method
for linear programming; for over thirty years, it has been known that the
worst-case behavior of this method is exponential, but also that its prac-
tical running time is typically bounded by a low-degree polynomial [1].
Approximation algorithms with performance guarantees often present the
same pattern: the approximations they return are often much better than
the bounds indicate, even when these bounds are known to be tight.

• Even in the absence of any of these problems, deriving tight asymptotic
bounds may be very difficult. All optimization metaheuristics for NP-
hard problems (such as simulated annealing or genetic algorithms) suffer
from this drawback: by considering a large number of parameters and a
substantial slice of recent execution history, they create a complex state
space which is very hard to analyze with existing methods, whether to
bound the running time or to estimate the quality of the returned solu-
tion. Another classic example is the deceptively simple Union-Find data
structure (see, e.g., [36], Section 3.2): the combination of Union by rank
(or size) and path compression was known to yield very efficient behav-
ior, yet its exact characterization eluded researchers for many years, until
Tarjan proved tight bounds [47]. (Of course, in this particular case, exper-
imentation would have proved futile, since no amount of experimentation,
on an conceivable dataset, could show supralinear growth in the running
time.)

These are the most obvious drawbacks. A more insidious drawback, yet one that
could prove much more damaging in the long term, is that worst-case asymptotic
analysis tends to promote the development of “paper-and-pencil” algorithms, that
is, algorithms that never get implemented. This problem compounds itself quickly,
as further developments rely on earlier ones, with the result that many of the
most interesting algorithms published over the last five years rely on several layers
of complex, unimplemented algorithms and data structures. In order to imple-
ment one of these recent algorithms, a computer scientist would face the daunting
prospect of developing implementations for all successive layers. Moreover, the
“paper-and-pencil” algorithms often ignore issues critical in making implementa-
tions efficient: low-level algorithmic issues (from elementary ideas such as the use of
sentinels to more elaborate ones such as the use of “sacks” in sophisticated priority
queues [38]) and architecture-dependent issues (particularly caching issues); the
implementer will have to resolve these issues “on the fly,” possibly with very poor
results. Transforming paper-and-pencil algorithms into efficient and useful imple-
mentations is today referred to as algorithm engineering; case studies show that
the use of algorithm engineering techniques, all of which are based on experimenta-
tion, can improve the running time of code by up to three orders of magnitude [35]
as well as yielding robust libraries of data structures with minimal overhead, as
done in the LEDA library [33, 34]. Algorithm engineering is reviving many of the
approaches used by computing pioneers such as Floyd and Knuth, who combined
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theoretical insights with practical ideas and even machine-dependent “tricks” to
derive efficient algorithms that performed well in both theory and practice.

There is no reason to abandon asymptotic worst-case analysis: it has served
the community very well for over thirty years and led to major algorithmic ad-
vances. But there is a definite need to supplement it with experimentation, which
implies that most algorithms should be implemented, not just designed. Many
algorithms are in fact quite difficult to implement—because of their intricate na-
ture and also because the designers described them at a very high level. Many
examples of such can be found in computational geometry: Chazelle’s linear-time
simplicity testing [9], Chazelle’s convex decomposition algorithm [8], and Chang
and Yap’s “potato-peeling” algorithm [7] all are very intricate and remain—to my
knowledge—unimplemented. But the practitioner is not the only one who stands
to benefit from implementation: often an implementation forces the theoretician to
face issues glossed over in the high-level design phase. Resolving these issues may
bring about a deeper understanding of the algorithm and a resulting simplification
or more modestly may lead the theoretician to new conjectures. Major theoreti-
cal breakthroughs, such as Chazelle’s linear-time simplicity test or Robertson and
Seymour’s polynomial-time minor test, are their own justification, but incremental
results should be judged on more practical grounds: do they lead to better, faster,
more robust implementations? Finally, experimentation should also test the use-
fulness of a problem formulation: not only is it too easy to devise cute puzzles
of dubious interest, but even in problems motivated by real applications we need
to find out what criteria to optimize and what parameters to take into account.
Validating a model or a particular criterion requires large-scale experimentation;
in a recent study, we used over 20 years of CPU time (on modern workstations) to
obtain data on the quality of phylogeny reconstructions produced by quartet-based
algorithms [45].

3. Modes of Empirical Assessment

We can classify modes of empirical assessment into a number of non-exclusive
categories:

• Checking for accuracy or correctness in extreme cases (e.g., standardized
test suites for numerical computing).

• Assessing the quality of heuristics for the approximate solution of NP-hard
problems (and, incidentally, generating hard instances).

• Measuring the running time of exact algorithms on real-world instances
of NP-hard problems.

• Comparing the actual performance of competing algorithms for tractable
problems and characterizing the effects of algorithm engineering.

• Discovering the speed-up achieved by parallel algorithms on real machines.
• Investigating and refining models and optimization criteria—what should

be optimized? and what parameters matter?
• Testing the quality and robustness of simulations, of optimization strate-

gies for complex systems, etc.

The first category has reached a high level of maturity in numerical computing,
where standard test suites are used to assess the quality of new numerical codes.
Similarly, the operations research community has developed a number of test cases
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for linear program solvers. We have no comparable emphasis to date in combinato-
rial and geometric computing. The last category is the target of large efforts within
the Department of Defense, whose increasing reliance on modeling and simulation
has placed it at the forefront of a movement to develop validation and verifica-
tion tools; the algorithm community can help by providing certification levels for
the various data structures and optimization algorithms embedded within large
simulation systems. Studying speed-ups in parallel algorithms remains for now a
rather specialized endeavor, in part because of the dedicated nature of software
(which typically cannot be run on another machine without major performance
losses) and because of our attending lack of a good model of parallel computation.
Investigation and refinement of models and optimization criteria is of major con-
cern today, particularly in areas such as computational biology and computational
chemistry. While many studies are published, most demonstrate a certain lack of
sophistication in the conduct of the computational studies—suffering as they do
from various sources of errors. We eschew a lengthy discussion of this important
area and instead present sound principles and illustrate pitfalls in the context of
the two categories that have seen the bulk of research to date in the algorithms
community. Most of these principles and pitfalls can be related directly to the
testing and validation of discrete optimization models in the natural sciences.

3.1. Assessment of Competing Algorithms and Data Structures for
Tractable Problems. The goal here is to measure the actual performance of
competing algorithms for well-solved problems. This is fairly new work in com-
binatorial algorithms and data structures, but common in Operations Research;
early (1960s) work in data structures typically included code and examples, but
no systematic study. The 1970s were a dry time in the area, until Sedgewick’s
work on quicksort [44]. More recent and comprehensive work began with Bent-
ley’s many contributions in his Programming Pearls (starting in 1983 [4]), then
with Jones’ comparison of data structures for priority queues [24], Dandamudi and
Sorenson’s empirical comparison of k-d tree implementations [14], and Stasko and
Vitter’s combination of analytical and experimental work in the study of pairing
heaps [46]. The first experimental study on a large scale was that of Moret and
Shapiro on sorting algorithms [36] (Chapter 8), followed by that of the same authors
on algorithms for constructing minimum spanning trees [36, 38]. In 1991, Johnson
and others initiated the very successful DIMACS Computational Challenges, the
first of which [22] focused on network flow and shortest path algorithms, indirectly
giving rise to several modern, thorough studies, by Cherkassky et al. on shortest
paths [11], by Cherkassky et al. on the implementation of the push-relabel method
for matching and network flows [13, 12], and by Goldberg and Tsioutsiouliklis on
cut trees [18]. The DIMACS Computational Challenges (the fifth, in 1996, focused
on another tractable problem, priority queues and point location data structures)
have served to highlight work in the area, to establish common data formats (par-
ticularly formats for graphs and networks), and to set up the first tailored test
suites for a host of problems.

Recent conferences (such as the Workshop on Algorithm Engineering and the
Workshop on Algorithm Enginering and Experiments1) have emphasized the need
to develop libraries of robust, well-tested implementations of the basic discrete

1See the front page of the ACM J. Experimental Algorithmics at www.jea.acm.org for links
to these conferences.
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and combinatorial algorithms, a task that only the LEDA project [33, 34] has
successfully undertaken to date.

Much interest has focused over the last 3-4 years on the question of tailoring
algorithms and implementations to the cache structure and policies of the architec-
ture. Pioneering studies by Ladner and his coworkers [27, 28, 29] established that
such optimization was feasible, algorithmically interesting, and worthwhile, even for
such old friends as sorting algorithms [2, 29, 40, 49] and priority queues [28, 43];
indeed, even matrix multiplication, which has been optimized in numerical libraries
for over 30 years, is amenable to such techniques [16]. Ad hoc reduction in memory
usage and improvement in patterns of memory addressing have been reported to
gain speedups of as much as a factor of 10 [35]. The related, and much better stud-
ied, model of out-of-core computing, as pioneered by Vitter and his coworkers [48],
has inspired new work in cache-aware and cache-independent algorithm design.

3.2. Assessment of Heuristics. Here the goal is to measure the performance
of heuristics on real and artificial instances and to improve the theoretical under-
standing of the problem, presumably with the aim of producing yet better heuristics
or proving that current heuristics are optimal. By performance is implied both the
running time and the quality of the solution produced.

Since the behavior of heuristics is very difficult to characterize analytically, ex-
perimental studies have been the rule. The Operations Research community, which
has a long tradition of application studies, has slowly developed some guidelines
for experimentation with integer programming problems (see [1], Chapter 18). The
first large-scale combinatorial study to include both real-world and generated in-
stances was probably our work on the minimum test set problem [37], but other
large-scale studies were published in the same time frame, most notably the classic
and exemplary study of simulated annealing by David Johnson’s group [20, 21].
The Second DIMACS Computational Challenge [23] was devoted to satisfiability,
graph coloring, and clique problems and thus saw a large collection of results in this
area. The ACM/SIAM Symposium on Discrete Algorithms (SODA) has included
a few such studies in each of its dozen events to date, such as the study of cut al-
gorithms by Chekuri et al. [10]. The Traveling Salesperson problem has seen large
numbers of experimental studies (including the well publicized study of Jon Bent-
ley [5]), made possible in part by the development of a library of test cases [41].
Graph coloring, whether in its NP-hard version of chromatic number determina-
tion or in its much easier (yet still challenging) version of planar graph coloring,
has seen much work as well; the second study of simulated annealing conducted by
Johnson’s group [20] discussed many facets of the problem, while Morgenstern and
Shapiro [39] provided a detailed study of algorithms to color planar graphs.

Challenges in this area include the generation of meaningful test instances and
the derivation of strong lower bounds that enable us to assess the quality of the
heuristic solutions.

4. Worthwhile Problems

In view of the preceding, what should researchers in the area be working on?
We propose below a partial list and briefly discuss the reasons for our choices.
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4.1. Testing and improving algorithms for hard problems. Understand-
ing how a heuristic works to cut down on computational time is generally too diffi-
cult to achieve through formal derivations; much the same often goes for bounding
the quality of approximations obtained with many heuristics.2 Yet both aspects
are crucial in evaluating performance and in helping us design better heuristics.

In the same vein, understanding when an exact algorithm runs quickly is often
too difficult for formal methods. It is much easier to characterize the worst-case
running time of an algorithm than to develop a classification of input data in terms
of a few parameters that suffice to predict the actual running time in most cases.
Experimentation can help us assess the performance of an algorithm on real-world
instances (a crucial point) and develop at least ad hoc boundaries between instances
where it runs fast and instances that exhibit the exponential worst-case behavior.

4.2. Comparing existing algorithms and data structures for tractable
problems. Our task is somewhat easier with algorithms for tractable problems
than with heuristics for intractable problems, yet characterizing the behavior of
either on real-world instances is generally very hard simply because we often lack
the crucial instance parameters with which to correlate running times. Experimen-
tation can quickly pinpoint good and bad implementations and whether theoretical
advantages are retained in practice. In the process, newer insights may be gleaned
that might enable a refinement or simplification of the algorithm. Experimentation
can also enable us to determine the actual constants in the running time analy-
sis; determining such constants beforehand is quite difficult (see [17] for a possible
methodology), but a simple regression analysis from the data can gives us quite
accurate values. Experimental studies naturally include caching effects, whereas
adding those into the analysis in a formal manner is very challenging.

4.3. Algorithm engineering. Many of the goals described under the previ-
ous two rubrics also fall under this heading. More specifically, however, algorithm
engineering seeks to produce the most efficient, as well as most usable, implemen-
tation possible. A cycle of testing and refinement, supported by profilers and other
measurement tools, is the key to removing bottlenecks in running time and to ob-
taining a good balance among the various routines. Reducing the use of memory,
changing the addressing patterns to make the implementation more cache-friendly
(which may imply some data structure changes as well), unrolling loops to keep
variables in registers or L1 cache, and taking a good look at what information is
really needed and how it is used at each stage in the algorithm, are all measures
that can lead to significant improvements in running time: in a recent effort, we
used all of these techniques to obtain a speed-up by three orders of magnitude [35].

4.4. Supporting and refining conjectures. Any theoretician knows the
pangs of committing to a research question without being too sure of the outcome
and the frustration of attempting to prove a statement that might not even be true.
Having a means of testing a conjecture over a range of instances might, in the best
case, set one’s mind at rest and, in the worst case, avoid a lot of wasted work. More
importantly, good experiments are a rich source of new conjectures and theorems.

2Of course, we have many elegant results bounding the worst-case performance of approx-
imation algorithms, but many of these bounds, even when attainable, are overly pessimistic for
real data.
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4.5. Developing tools. Anyone contemplating the coding of a library mod-
ule for some data structure or basic algorithm must take reasonable precautions
to ensure that her implementation will be as efficient as possible and to document
conditions under which it will perform well or poorly. Testing the implementa-
tion on a range of machines with various compilers and environments will increase
confidence in the characterizations. For instance, extensive testing of the LEDA
modules by their developers and many others led to a 2- to 3-fold reduction in their
running-time overhead [32].

At a more basic level, we need flexible tools to collect data (how do we measure
cache behavior, for instance?) and analyze it. We should not underestimate the
value of experimentation with algorithms as a discovery tool; in order to make
such experimentation even more valuable, statistical tools with good graphical and
animation capabilities are urgently needed.

4.6. Conducting experiments to assess the relevance of optimization
criteria. The pure theoretician often has only one answer when asked why (s)he
worked on a problem: because it was intriguing. But it is fatally easy to generate
volumes of intriguing, unsolved optimization problems; before committing scarce
resources to their solution, it behooves us to evaluate their importance and relevance
as well as we can. Applications provide sufficient justification to study problems;
but the model used by the algorithm designer, which is necessarily a simplification of
the real problem, must be validated through large-scale experimentation, preferably
using a mix of real data and simulations.

5. Experimental Setup

How should an experimental study be conducted, once a topic has been iden-
tified? Surely the most important criterion to keep in mind is that an experiment
is run either as a discovery tool or as a means to answer specific questions. Exper-
iments as explorations are common to all endeavors, in computing, in the sciences,
and indeed in any human activity; the setup is essentially arbitrary—in particu-
lar it should not be allowed to limit one’s creativity. So we shall focus instead
on experiments as means to answer specific questions—the essence of the scientific
method used in all physical sciences. In this methodology, we begin by formulat-
ing a hypothesis or a question, then set about gathering data to test or answer
it, while ensuring reproducibility and significance. In terms of experiments with
algorithms, these characteristics give rise to the following procedural rules—but the
reader should keep in mind that most researchers would mix the two activities for
quite a while before running their “final” set of experiments:

• Begin the work with a clear set of objectives: which questions will you be
asking, which statements will you be testing?

• Once the experimental design is complete, simply gather data. (No alter-
ations are to be made until all data have been gathered, so as to avoid
bias or drift.)

• Analyze the data to answer only the original objectives. (Later, consider
how a new cycle of experiments can improve your understanding.)

At all stages, we should beware of a number of potential pitfalls, including various
biases due to:
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• The choice of machine (caching, addressing, data movement), of language
(register manipulation, built-in types), or of compiler (quality of optimiza-
tion and code generation).

• The quality of the coding (consistency and sophistication of program-
mers).

• The selection or generation of instances (we must use sufficient size and
variety to ensure significance).

• The method of analysis (many steps can be taken to improve the signifi-
cance of the results as well as to bring out trends).

Caching, in particular, may have very strong effects when comparing efficient al-
gorithms. For instance, in our study of MST algorithms, we observed 3:1 ratios
of running time depending on the order in which the adjacency lists were stored.
Pioneering studies by Ladner and his students [27, 28, 29] have quantified many
aspects of caching and offer suggestions on how to work around (or take advantage
of) caching effects.

Other typical pitfalls that arise in experimental work with algorithms include
• Uninteresting work: comparing programming languages or specific plat-

forms, in particular unusual ones; comparing algorithms with widely dif-
ferent behavior (linear and quadratic, say); etc.

• Bad setup: testing up to some fixed running time or space without ver-
ifying whether the asymptotic behavior has manifested; testing too few
instances; using rough code without any attempt at optimization and mea-
suring running times; using “found code” without any documentation (a
temptation these days on the net); ignoring existing test suites; ignoring
existing and widely used libraries; etc.

• Bad analysis or presentation: discarding data that do not fit without any
explanation or even warning; presenting all of the data without analy-
sis; using comparisons to undefined “standards” (e.g., to the system sort
routine).

Johnson [19] offers a much more detailed list of the various problems he has ob-
served in experimental studies, particularly those dealing with heuristics for hard
optimization problems.

Most of these pitfalls can be avoided with the type of routine care used by
experimentalists in any of the natural sciences. However, we should point out that
confounding factors can assume rather subtle forms. Knuth long ago pointed out
curious effects of apparently robust pseudorandom number generators (see [25],
Vol. II); the creation of unexpected patterns as an artifact of a hidden routine (or,
in the case of timing studies, as an artifact of interactions between the memory
hierarchy and the code) could easily lead the experimenter to hypothesize nonex-
istent relationships in the data. The problem is compounded in complex model
spaces, since obtaining a fair sampling of such a space is always problematic. Thus
it pays to go over the design of an experimental study a few times just to assess its
sensitivity to potential confounding factors—and then to examine the results with
the same jaundiced eye.

6. What to Measure?

One of the key elements of an experiment is the metrology. What do we mea-
sure, how do we measure it, and how do we ensure that measurements do not
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interfere with the experiments? If there is one universal piece of advice in this
area, it is always look beyond the obvious measures! Obvious measures may include
the value of the solution (for heuristics and approximation algorithms), the running
time (for almost every study), the running space, etc. These measures are indeed
useful, but a good understanding of the algorithm is unlikely to emerge from such
global quantities. We also need structural measures of various types (number of
iterations; number of calls to a crucial subroutine; etc.), if only to serve as a scale
for determining such things as convergence rates. Knuth [26] has advocated the use
of mems, or memory references, as a structural substitute for running time. Other
authors have used the number of comparisons, the number of data moves (both
classical measures for sorting algorithms), the number of assignments, etc. Most
programming environments offer some type of profiler, a support system that sam-
ples code execution at fixed intervals and sets up a profile of where the execution
time was spent (which routines used what percentage of the CPU time) as well as
of how much memory was used; with suitable hardware support, profilers can also
report caching statistics. Profiling is invaluable in algorithm engineering—multiple
cycles of profiling and revising the most time-consuming routines can easily yield
gains of one to two orders of magnitude in running time.

In our own experience, we have found that there is no substitute, when evaluat-
ing competing algorithms for tractable problems, for measuring the actual running
time; indeed, time and mems measurements, to take one example, may lead one to
entirely different conclusions. However, the obvious measures are often the hardest
to interpret as well as the hardest to measure accurately and reproducibly. Run-
ning time, for instance, is influenced by caching, which in turn is affected by any
other running processes and thus effectively not reproducible exactly. In the case of
competing algorithms for tractable problems, the running time is often extremely
low (we can obtain a minimum spanning tree for a sparse graph of a million vertices
in much less than a second on a typical desktop machine), so that the granularity
of the system clock may create problems—this is a case where it pays to repeat
the entire algorithm many times over on the same data, in order to obtain running
times with at least two digits of precision. In a similar vein, measuring the quality
of a solution can be quite difficult, due to the fact that the optimal solution can
be very closely approached on instances of small to medium size or due to the fact
that the solution is essentially a zero-one decision (as in determining the chromatic
index of a graph or the primality of a number), where the appropriate measure is
statistical in nature (how often is the correct answer returned?) and thus requires
a very large number of test instances.

7. How to Present and Analyze the Data

Perhaps the first requirement in data presentation is to ensure reproducibility
by other researchers: we need to describe in detail what instances were used (how
they were generated or collected), what measurements were collected and how,
and, preferably, where the reader can find all of this material on-line. The second
requirement is rather obvious, but often ignored for all that: we cannot just discard
what appear to be anomalies, at least not unless we can explain their presence; an
anomaly without an explanation is not an error, but an indicator that something
unusual (and possibly interesting) is going on. We have already mentioned several
times that every effort should be made to minimize the influence of the environment:
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platform, coding, compiling, paging, caching, etc., through cross-checking across
multiple platforms and environments, through the use of normalization routines,
and through environmental precautions (such as running on otherwise quiescent
machines).

The data should then be analyzed with suitable statistical methods. Since
attaining levels of statistical significance may be quite difficult in the large state
spaces we commonly use, various techniques to make the best use of available
experiments should be applied (see McGeoch’s excellent survey [30] for a discussion
of several such methods). Cross-checking the measurements with any available
theoretical results, especially those that attempt to predict the actual running time
(such as the “equivalent code fragments” approach of [17]), is crucial; any serious
discrepancy needs to be investigated.

Finally, the data need to be presented to the readers in a form that humans can
easily process—not in tabular form, not as raw plots with multiple crossing curves,
but with suitable scaling and normalization and with the use of good graphics,
colors, etc. Normalization and scaling are a particularly important part of both
analysis and presentation: not only can they bring out trends not otherwise evident,
but they can help in filtering out noise and thus increasing the significance of the
results. Animations can convey enormous amounts of information very succinctly,
so consider providing such if the work needed to produce them is not excessive.

8. Illustration: Algorithms for Constructing a Minimum Spanning Tree

We shall not repeat here the results given in [38], but rather highlight the
problems encountered during the study and some of the solutions we found to
be effective. We studied MST algorithms because of their practical importance,
because instances encountered in practice can be very large, and because the im-
plementer faces a very large number of algorithmic choices, each with its own choice
of supporting data structures. In 1989, when we started the study, we had at least
the following choice of algorithms: Kruskal’s (with a priority queue, with prior
sorting, or with sorting on demand), Prim’s (with any of a large number of pri-
ority queues, from binary heaps to rank- and run-relaxed heaps), Cheriton and
Tarjan’s (with and without the lazy variation) Fredman and Tarjan’s, Gabow et
al.’s, and the entirely different algorithm of Fredman and Willard; to this list we
could now add newer and asymptotically faster algorithms by Klein and Tarjan,
by Karger, by Chazelle, and by Pettie and Ramachandran. Prim’s algorithm, the
most commonly used (for good reason, as our study demonstrated), could in turn
be implemented with any of a dozen or more priority queue designs, each with its
own implementation choices. Very few of these choices had been implemented at
that time.

We ran an experimental study using three different platforms (two CISC ma-
chines and one RISC machine) and multiple languages and compilers, but with one
programmer writing all of the code, so as to keep the level of coding consistent
throughout. We explored low-level decisions (pointers vs. array indices, data moves
vs. indirection, etc.) before committing to specific implementations. We used five
different graph families in the tests and also constructed specific worst-case families
with adversaries; all of our families included very large graphs (up to a million ver-
tices and over a million edges). We ran at least 20 instances at each size, checking
independent series of experiments for consistency in the results. Finally, we took
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precautions from the start to minimize the effects of paging (easy) and of caching
(hard).

Our data collection and analysis had four goals: (i) to minimize any residual
effects of caching and any other machine dependencies; (ii) to normalize running
times across machines; (iii) to gauge the influence of lower-order terms and to ver-
ify the asymptotic behavior; and (iv) to visualize quickly the relative efficiency of
each algorithm for each type and size of graph. We realized all four goals at once
by the simple strategy of normalizing, independently on each platform, the run-
ning times measured for the various MST algorithms by the running times of a
simple, linear-time procedure with roughly similar memory reference patterns—in
our case a procedure that counted the number of edges of the graph by traversing
the adjacency lists. The similar memory addressing patterns canceled out most of
the caching effects; the similar work in dereferencing pointers canceled out most of
the CISC machines peculiarities; and the direct comparison to the (then unattain-
able) lower bound of a linear-time procedure immediately showed the asymptotic
behavior and highlighted the relative efficiency of each algorithm.

Early in the implementation phase, we realized that Fibonacci heaps and re-
laxed heaps were not competitive. We followed a suggestion made by Driscoll et
al. [15] about relaxed heaps: to group nodes into larger units so that changes in
key value would most often be resolved within a unit and not require restructur-
ing the heap; we implemented this idea, which we called sacks, for other types of
heaps. This was a crucial decision for Fibonacci heaps, which became much more
competitive with the addition of sacks—a new result that could only have come
about through implementation.

At the conclusion of our work, we had comforting findings for the practitioner:
the fastest algorithm by far was also the simplest, Prim’s, implemented with pairing
heaps or simple binary heaps. The more sophisticated implementations could not
pay off for reasonable graph sizes, nor could the more sophisticated algorithms. But
we also had a sobering report: our last implementations of Prim’s algorithm with
Fibonacci heaps were nearly ten times faster than our first! Thus even experienced
programmers who understand the details of their data structures and algorithms
can refine implementations to the point of evolving entirely new conclusions—a key
aspect of algorithm engineering.

This study, along with an earlier study on sorting algorithms, enables us to
draw some conclusions regarding experimental studies of algorithms for well-solved
problems:

• Multi-machine, multi-compiler trials are needed. The preference of one
architecture for data moves over indirection, for instance, could easily
mask other effects, as could the highly variable details of the caching
system. The first DIMACS challenge used the simple strategy of running a
collection of benchmarks on each platform to enable comparison of results,
but more sophisticated approaches are required, particularly with respect
to cache-awareness. One attractive possibility is normalization by the
running time of a known routine with well understood characteristics, but
even this strategy is limited to relatively simple programs.

• A very large range of sizes is indispensable. Since the algorithms compared
are all efficient and since sophisticated algorithms tend to demonstrate
their asymptotic behavior for larger sizes than simpler algorithms, we
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should run our tests up to the largest sizes that can be accommodated on
our platforms, even if these sizes may exceed any likely to be encountered
in practice. A large range of sizes will also help visualizing the asymptotic
behavior and may uncover unexpected problems attributable to caching.

• Extreme care must be used when generating instances. This problem is
particularly acute when instances are defined by multiple parameters, as
in graphs and networks: large numbers of different families can be de-
fined, with potentially very different behaviors. We should ensure that
realistic instances are being generated, that large instances generated
with pseudo-random number generators do not present artificial patterns
caused by problems with the generator, and also that, whenever possible,
some worst-case families are included in the study.3

• Real datasets should always be used. Few data generators can accurately
reproduce the distribution of real data. Researchers have long known that
real instances of hard optimization problems can be surprisingly easy to
solve (as well as, more rarely, surprisingly hard), but much the same can
be said of instances of tractable problems.

• Normalization by a suitable baseline routine is very successful in smooth-
ing out variations in architecture and caching, as well as in highlighting the
asymptotic behavior and relative efficiency of the competing algorithms.
Whenever our competing algorithms are closely tied, data presentation is
of crucial importance.

9. Conclusions

Experimentation should become once again the “gold standard” in algorithm
design, for several compelling reasons:

• Experimentation can lead to the establishment of well tested and well
documented libraries of routines and instances.

• Experimentation can bridge the gap between practitioner and theoreti-
cian.

• Experimentation can help theoreticians develop new conjectures and new
algorithms, as well as a deeper understanding (and thus perhaps a cleaner
version) of existing algorithms.

• Experimentation can point out areas where additional research is most
needed.

However, experimentation in algorithm design needs some methodological develop-
ment. While it can and, to a large extent, should seek inspiration from the natural
sciences, its different setting (a purely artificial one in which the experimental pro-
cedure and the subject under test are unavoidably mixed) requires at least extra
precautions. Fortunately, a number of authors have blazed what appear to be a
good trail to follow; hallmarks of good experiments include:

• clearly defined goals;

3We observed one curious and totally unexpected behavior with generated data for the MST
problem. One of our families of datasets consists of worst-case instances for Prim’s algorithm
run with binary heaps—the data are created by running the algorithm and picking values that
maximize the number of elementary heap manipulations. These data, when fed to the version of
Kruskal’s algorithm that uses quicksort (implemented with a median-of-three strategy for choosing
the partitioning element) uniformly caused quicksort to exhibit quadratic behavior!
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• large-scale testing, both in terms of a range of instance sizes and in terms
of the number of instances used at each size;

• a mix of real-world instances and generated instances, including any sig-
nificant test suites in existence;

• clearly articulated parameters, including those defining artificial instances,
those governing the collection of data, and those establishing the test
environment (machines, compilers, etc.);

• statistical analyses of the results and attempts at relating them to the
nature of the algorithms and test instances; and

• public availability of instances and instance generators to allow other re-
searchers to run their algorithms on the same instances and, preferably,
public availability of the code for the algorithms themselves.
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