Corso di Laurea in Informatica - AA 2019-20

ALGEBRA

Antonietta Venezia (Canale M-Z)

Sessione invernale - I Appello- Prova scritta

08 gennaio 2020

Svolgere gli esercizi esplicitando il percorso logico seguito per giungere alla soluzione. Non è permesso consultare appunti e testi. Il compito deve essere consegnato ordinato e leggibile in caso contrario non sarà valutato.

Parte I

ESERCIZIO 1.1. Considerato l'anello delle classi resto (\mathbf{Z}_{40} , +, ·), determinare il reticolo dei sottogruppi del gruppo additivo (\mathbf{Z}_{40} , +) e il suo diagramma di Hasse. Determinare gli elementi del gruppo moltiplicativo ($\mathbf{U}(\mathbf{Z}_{40})$,·). Tale gruppo è ciclico?

ESERCIZIO 1.2. Nel gruppo simmetrico S_5 è assegnata la permutazione $\sigma = (1 \ 4)(3 \ 5)(4 \ 3 \ 2 \ 5)$.

Determinare l'ordine, la parità di σ e tutti i sottogruppi di $<\sigma>$. Definire almeno due isomorfismi dal gruppo ciclico $<\sigma>$ al gruppo $(Z_n,+)$, per un determinato n>1.

Parte II

ESERCIZIO 2.1. Nello spazio vettoriale \mathbb{R}^4 , si considerino i seguenti sottospazi:

$$U = \langle (1,1,1,2); (1,2,2,1) \rangle e W = \{ (x,y,z,t) : y = z = 0 \}.$$

Determinare una base e equazioni cartesiane per (U+W) e $(U\cap W)$. Prolungare una base di (U+W) ad una base di \mathbb{R}^4 .

ESERCIZIO 2.2. Sia L : $\mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo di \mathbb{R}^3 definito da: L(x,y,z) = (2x-2y-z,y,z).

Determinare:

- a) la matrice A associata ad L rispetto alla base canonica,
- b) gli autovalori di L e una base per ogni autospazio,
- c) la matrice associata a L rispetto alla base $B = \{(1,-1,2); (1,0,0); (1,1,0)\}.$

Verificare infine se L possa essere rappresentata da una matrice diagonale D ed in tal caso trovare una matrice P tale che $A = P^{-1}DP$.