Corso di Laurea in Informatica - AA 2019-20

ALGEBRA

Antonietta Venezia (Canale M-Z)

Sessione invernale - II Appello- Prova scritta

07 febbraio 2020

SOLUZIONI

Parte I

ESERCIZIO 1.1. Considerato il gruppo moltiplicativo $(U(\mathbf{Z}_{15}), \cdot)$ dell'anello delle classi resto modulo 15, determinare tutti i suoi sottogruppi ciclici e il diagramma di Hasse dell'insieme parzialmente ordinato costituito da tali sottogruppi, si tratta di un reticolo? Il gruppo moltiplicativo $(U(\mathbf{Z}_{15}), \cdot)$ è ciclico?

Sol. Si ha: $|U(\mathbf{Z}_{15})| = \varphi(15) = 8$, dunque i suoi sottogruppi non banali possono essere di cardinalità 2 o 4 (teorema di Lagrange). Risulta: $U(\mathbf{Z}_{15}) = \{1,2,4,7,8,11,13,14\}$ e :

$$o(2) = 4 (<2> = \{1,2,4,8\});$$

$$o(4) = 2 (<4> = {1,4});$$

$$o(7) = 4 (<7> = \{1,7,4,13\});$$

$$o(8) = 4 ((<8> = \{1,8,4,2\} = <2>)$$

$$o(11) = 2 (<11> = \{1,11\})$$

$$o(13) = 4 (<13> = \{1,13,4,7\} = <7>)$$

$$o(14) = 2 (<14> = {1,14}).$$

Pertanto $U(\mathbf{Z}_{15})$ non è ciclico. L'insieme parzialmente ordinato dei sottogruppi ciclici è (H,\subseteq) dove $H=\{1, <2>, <4>, <7>, <11>, <14>\}$ e il suo diagramma di Hasse è il seguente :

 (H,\subseteq) non è un reticolo in quanto ad esempio non esiste $\sup(<2>,<7>)$.

ESERCIZIO 1.2. Nel gruppo simmetrico S_5 è assegnato un 3-ciclo σ e una trasposizione τ disgiunti (dunque essendo disgiunti $\sigma\tau = \tau\sigma$). Determinare il sottoinsieme H di S_5 costituito da tutti i prodotti finiti di σ e di τ e verificare che H è un sottogruppo di S_5 .

Sol. Poiché σ e τ hanno cicli disgiunti, ogni permutazione di H è della forma $\sigma^k \tau^h$ con k,h ≥ 0 . Inoltre risulta: $\sigma^3 = \tau^2 = 1$ e quindi H = $\{1,\sigma,\sigma^2,\tau,\sigma\tau,\sigma^2\tau\}$. L'insieme H è un sottogruppo di S_5 , perché: $1 \in H$; H è chiuso, in quanto il prodotto $(\sigma^k \tau^h)(\sigma^i \tau^j)$ di due elementi di H è uguale a $\sigma^{k+i} \tau^{h+j} \in H$, e infine l'inverso di un elemento di H appartiene ancora ad H essendo $\sigma^{-1} = \sigma^2, \tau^{-1} = \tau, (\sigma\tau)^{-1} = \sigma^2\tau$.

Parte II

ESERCIZIO 2.1. Siano $R_2[x]$ lo spazio vettoriale dei polinomi di grado ≤ 2 a coefficienti reali e $M_2(R)$ lo spazio vettoriale su R delle matrici quadrate di ordine 2. Sia L il morfismo da $R_2[x]$ in $M_2(R)$ definito da:

$$L(a+bx+cx^{2}) = \begin{pmatrix} -b & a+c \\ a-c & b-c \end{pmatrix}$$

Determinare:

i. Una base del nucleo e una dell'immagine di L.

ii. La matrice associata ad L rispetto alle basi: $B = \{1,1+x,1-x^2\}$ e $B' = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$.

Sol. La matrice associata ad L rispetto alle basi canoniche è :

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}.$$

 $r(A) = 3 = \dim \text{ Im } L = 3 \text{ -dim Ker } L$. Dunque $\dim \text{ Ker } L = 0 \text{ ossia Ker } L = \{0\}$. Inoltre Im L è generata dai vettori L(1), L(x), $L(x^2)$, tali vettori costituiscono una base di Im L poiché $\dim \text{Im } L = 3$.

La matrice A' che rappresenta L rispetto alla base B e alla base B' ha per colonne le coordinate rispetto alla base B' dei vettori L(1), L(1+x), $L(1-x^2)$. Dunque:

$$\begin{split} L(1) &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \\ L(1+x) &= \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \\ L(1-x^2) &= \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} = -2\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 2\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \end{split}$$

Quindi:

$$A' = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -2 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}.$$

ESERCIZIO 2.2. Al variare del parametro reale k, sia $L_k : \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo di \mathbb{R}^3 rappresentato, rispetto alla base $\mathbb{B} = \{(1,1,1); (1,1,0); (1,0,0)\}$, dalla matrice:

$$\begin{pmatrix} k & 1 & 0 \\ (1-k) & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Determinare: a) l'immagine, il nucleo, la dimensione degli autospazi di L_k ,

b) i valori di k per cui L_k si diagonalizza.

Posto:

$$A_{k} = \begin{pmatrix} k & 1 & 0 \\ (1-k) & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$

si ha: det $A_k = -1+2k$, pertanto per $k \neq 1/2$, L_k è un isomorfismo (Im $L_k = \mathbb{R}^3$, Ker $L_k = \{0\}$). Per k=1/2, si ha :

$$A_{1/2} = \begin{pmatrix} 1/2 & 1 & 0 \\ 1/2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$

dunque Im $L_{1/2} = \langle L_{1/2}(1,1,0); L_{1/2}(1,0,0) \rangle$, essendo:

$$L_{1/2}(1,1,0) = (1,1,1) + (1,1,0) = (2,2,1) e L_{1/2}(1,0,0) = (1,0,0).$$

Il nucleo di $L_{1/2}$ è isomorfo allo spazio delle soluzioni del sistema $A_{1/2}X=0$ (le soluzioni del sistema sono le coordinate rispetto alla base B dei vettori di Ker $L_{1/2}$) e quindi:

Ker
$$L_{1/2} = \langle -2(1,1,1) + (1,1,0) + 2(1,0,0) \rangle = \langle (1,-1,-2) \rangle$$
.

Gli autovalori di L_k sono gli zeri del polinomio caratteristico det $(A_k-\lambda I)$. Si ha:

$$\det(A_k-\lambda I) = (1-\lambda) [\lambda^2-\lambda(k+1)-1+2k],$$

da cui un autovalore di L_k , per ogni k, è $\lambda=1$ con molteplicità algebrica almeno 1. Gli altri autovalori sono gli zeri del polinomio $p(\lambda)=[\lambda^2-\lambda(k+1)-1+2k]$. Dunque se si impone la condizione che 1 sia un autovalore di L_k con molteplicità maggiore di 1 si ottiene: 1-k-1-1+2k=k-1=0, da cui k=1. Pertanto, essendo det $(A_1-\lambda I)=(\lambda^2-2\lambda+1)=(\lambda-1)^2$, 1 è un autovalore di L_1 con molteplicità algebrica 3. L'autospazio E(1) è isomorfo allo spazio delle soluzioni $(A_1-I)X=0$ e dunque $mg(1)=\dim E(1)=3-r((A_1-I)=1)$ e quindi L_1 non è diagonalizzabile.

Posto $\Delta = (k+1)^2 - 4(-1+2k) = (k^2 - 6k + 5)$, si ha:

- per k<1 o k>5 (ossia $\Delta > 0$), il polinomio p(λ) ha due radici distinte λ_1 e λ_2 (entrambi diversi da 1) e quindi L_k ha tre autovalori distinti: 1, λ_1 , λ_2 , tutti gli autospazi hanno dimensione 1 e quindi L_k è diagonalizzabile;
- per 1 < k < 5 (ossia $\Delta < 0$), il polinomio $p(\lambda)$ non ha radici reali e quindi L_k ha un solo autovalore $\lambda = 1$ il cui autospazio ha dimensione 1. Pertanto L_k non è diagonalizzabile;
- per k=1 si è visto che L_1 non è diagonalizzabile in quanto ha un solo autovalore 1 con mg(1)=1<3=ma(1),
- per k=5, il polinomio $p(\lambda)$ ha una radice $\lambda=3$ con ma(3)=2=mg(3) e quindi L_5 ha due autovalori distinti: $\lambda_1=1$, $\lambda_2=3$ con mg(1)+mg(3)=1+2=3, pertanto L_5 è diagonalizzabile.