Algebra

Claudia Malvenuto Canale A-L Scheda esercizi n. 3

12 ottobre 2011

The brain is wider than the sky, For, put them side by side, The one the other will include With ease, and you beside. [...] (Emily Dickinson)

1. Dimostrare per induzione la validità delle seguenti uguaglianze:

(a)
$$1+2+\ldots+n=\frac{n(n+1)}{2}$$

(b)
$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(c)
$$1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

(d)
$$1^4 + 2^4 + \ldots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

(e)
$$1+3+5+\ldots+(2n-1)=n^2$$

(f)
$$1+5+9+\ldots+(4n+1)=(n+1)(2n+1)$$

(g)
$$2^3 + 4^3 + \ldots + (2n)^3 = 2n^2(n+1)^2$$

(h)
$$\sum_{i=0}^{n} (4i+1) = (2n+1)(n+1)$$

(i)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$$

(j)
$$\sum_{k=1}^{n} \frac{2k+1}{k^2(k+1)^2} = 1 - \frac{1}{(n+1)^2}$$

- 2. Consideriamo la somma dei primi n numeri pari: $2+4+6+\ldots+2n$. Calcolare detta somma per qualche valore di n. Cercare di dedurre una formula di calcolo rapido (analoga a quelle precedenti) ed eventualmente dimostrarla per induzione.
- 3. Definiamo $a_n := 2^{2^n} + 1$; dimostrare che si ha $a_n = a_0 a_1 \dots a_{n-1} + 2$.
- 4. Si dimostri per induzione che si ha

$$\forall n \in \mathbb{N}: \sum_{i=0}^{n} 2^{i} (= 1 + 2 + 4 + \dots + 2^{n}) = 2^{n+1} - 1$$

e che più in generale vale

$$\forall n \in \mathbb{N}: 1 + x + x^2 + \ldots + x^n = \frac{x^{n+1} - 1}{x - 1}.$$

- 5. Dimostrare per induzione su n che, per ogni $n \ge 1$ si ha:
 - (a) $2n \ge n + 1$;
 - (b) $2^n \ge n + 1$;
 - (c) La precedente disuguaglianza si generalizza nella seguente, detta disuguaglianza di Bernoulli:

$$\forall n, m \in \mathbb{N} : (1+m)^n \ge 1 + nm;$$

- (d) $n! > n^2$;
- (e) $3|(n^3-n)$;
- (f) $8|(3^{2n}-1)$;
- (g) se $x, y \in \mathbb{N}$, allora $(x y)|(x^n y^n)$.
- (h) $2n^3 3n^2 + n + 31 > 0$ (vale anche per qualche n < 1?).
- 6. Dimostrare per induzione che, per ogni $n \geq 7$, si ha $3^n < n!$. Trovare un naturale m per cui si abbia $4^m < m!$ e dimostrare che vale $4^n < n!$ per ogni $n \geq m$.
- 7. Dimostrare per induzione che, definendo il coefficiente binomiale

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

(per $0 \le k \le n$; ricordate che 0! = 1), vale la formula del binomio di Newton:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

- 8. Ricordate che i numeri di Fibonacci F_k (k = 1, 2, ...) sono definiti ricorsivamente come segue: $F_1 := 1$, $F_2 := 1$ e, per $k \geq 3$, $F_k := F_{k-1} + F_{k-2}$. Quindi i primi numeri di Fibonacci sono 1, 1, 2, 3, 5, 8, 13,... Dimostrare per induzione le seguenti affermazioni:
 - (a) per ogni $n \ge 1$ si ha $F_1^2 + \ldots + F_n^2 = F_n F_{n+1}$;
 - (b) per ogni $n \ge 1$ si ha $mcd(F_n, F_{n+1}) = 1$;
 - (c) per ogni $n \ge 1$ si ha $F_1 + F_3 + \ldots + F_{2n-1} = F_{2n}$.
- 9. Sia $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definita come f(m,0) = m e, per $n \geq 0$, f(m,n+1) = f(m,n) + 1.
 - (a) Qual è il valore di f(52,39)?
 - (b) Quale proprietà si può dimostrare in generale per f(m,n)?
- 10. Principio di Dirichlet, noto anche come **principio dei cassetti**, oppure **pigeonhole principle** (principio delle gabbie dei piccioni).

Se un insieme finito con n elementi (piccioni) deve essere ripartito in m sottoinsiemi (gabbie) e se $n > m \ge 1$, allora almeno un sottoinsieme contiene più di un elemento.

Dimostrare per induzione su n (con $n > m \ge 1$) tale enunciato, all'apparenza del tutto ovvio, ma che rende spesso un utile servizio.

11. Si consideri la seguente affermazione: Una scatola di matite contiene sempre matite che hanno tutte lo stesso colore.

Determinare l'errore logico nella seguente "dimostrazione per induzione":

Sia n il numero di matite nella scatola. L'affermazione è ovvia per n=1. Sia $n\geq 2$; si supponga, per ipotesi induttiva, che prese comunque n-1 matite dalla scatola, esse abbiano lo stesso colore: vogliamo dimostrare che da ciò segue che l'enunciato è vero per l'insieme $C=\{c_1,c_2,\ldots,c_n\}$ delle n matite. Infatti per ipotesi induttiva gli n-1 elementi di $C'=\{c_1,\ldots,c_{n-1}\}$ hanno lo stesso colore, così come hanno lo stesso colore gli n-1 elementi di $C''=\{c_2,\ldots,c_n\}$: quindi gli elementi di $C'\cap C''=\{c_2,\ldots,c_{n-1}\}$ hanno lo stesso colore tanto degli elementi di C' quanto degli elementi di C'': da questo si conclude facilmente (per confronto) che tutte le matite di C hanno lo stesso colore.

- 12. Si provi che il numero di regioni nel piano formate da n rette in posizione generica (tali cioè che non ci siano rette parallele e tali che tre rette non si incontrino mai in uno stesso punto) è n(n+1)/2+1.
- 13. Si calcoli il numero di regioni di un piano che si formano intersecando n cerchi in posizione generica (tali cioè che tre cerchi non si intersechino in un punto e due cerchi si intersechino in esattamente due punti).