ALGEBRA

Claudia Malvenuto Canale A-L Scheda esercizi n. 2

5 ottobre 2011

I felt a cleaving in my mind
As if my brain had split;
I tried to match it, seam by seam,
But could not make them fit. [...]

(Lost thought, Emily Dickinson)

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ definita come $f(x) = x^2$ per ogni $x \in \mathbb{Z}$. Determinare $f^{-1}(9), f^{-1}(-4), f^{-1}(6), f^{-1}(\mathbb{N}), f^{-1}(2\mathbb{N}), f(\{-5, 4, -2, 10\}), f^{-1}(\mathbb{Z})$ e Imf.
- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ l'applicazione definita da f(x) = 6x per ogni $x \in \mathbb{Z}$. Determinare $f^{-1}(15), f^{-1}(30), f(\{-5, 3, 21\}), f^{-1}(\mathbb{Z})$ e Imf. Se si considera l'applicazione $g: \mathbb{Q} \to \mathbb{Q}$ definita allo stesso modo, determinare gli analoghi degli insiemi sopra definiti.
- 3. Studiare l'applicazione $f: \mathbb{Z} \to \mathbb{Z}$ che ad $x \in \mathbb{Z}$ associa f(x) = ax + 1, al variare del parametro $a \in \mathbb{Z}$.
- 4. Studiare l'applicazione f di \mathbb{R} in [-1,1] definita da $f(x) = \sin(x)$.
- 5. Studiare l'applicazione $f: \mathbb{Q} \to \mathbb{Q}$ definita da $f(x) = x^2 + 2x 1$ per ogni $x \in \mathbb{Q}$ e descrivere esplicitamente $f^{-1}(0), f^{-1}(6), f^{-1}(14)$. Ripetere l'esercizio per la funzione $f: \mathbb{R} \to \mathbb{R}$ definita allo stesso modo.
- 6. Dimostrare che l'applicazione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = ax + b per ogni $x \in \mathbb{R}$, è biiettiva $(\forall a \in \mathbb{R} \setminus \{0\} \text{ e } \forall b \in \mathbb{R})$ e determinarne l'inversa.
- 7. Studiare l'applicazione $\alpha: \mathbb{R} \to \mathbb{R}$ definita da $\alpha(x) = x^2 |x|$ per ogni $x \in \mathbb{R}$.
- 8. Studiare l'applicazione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^7 3$ per ogni $x \in \mathbb{R}$, verificare se è biiettiva; in caso affermativo, determinarne l'inversa.
- 9. Studiare le applicazioni $f : \mathbb{N} \to \mathbb{Z}$ con $f(x) = x \in g : \mathbb{Z} \to \mathbb{N}$ con g(x) = |x| e descrivere le applicazioni $f \circ g \in g \circ f$.

10. Si dica se le corrispondenze individuate dai seguenti insiemi sono applicazioni di \mathbb{R} in \mathbb{R} :

$$\{(x,y) \in \mathbb{R}^2 : y = 5\}$$

$$\{(x,y) \in \mathbb{R}^2 : x = 3\}$$

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

$$\{(x,y) \in \mathbb{R}^2 : y = \sin x\}$$

$$\{(y,x) \in \mathbb{R}^2 : y = \sin x\}$$

- 11. Dire se le seguenti assegnazioni definiscono delle applicazioni:
 - (a) $f: \mathbb{Z}^2 \to \mathbb{Z}$ tale che f(x, y) = x se x è pari, f(x, y) = y se x è dispari;
 - (b) $f: \mathbb{Z}^2 \to \mathbb{Z}$ tale che f(x, y) = x se x è pari, f(x, y) = y se y è dispari;
 - (c) $f: \mathbb{Z} \to \mathbb{N}$ tale che f(n) = n 5;
 - (d) $f: \mathbb{Q} \to \mathbb{Q}$ tale che $f(\frac{p}{q}) = \frac{p+q}{2}$;
 - (e) $f: \mathbb{Q} \to \mathbb{Q}$ tale che $f(\frac{p}{q}) = 3\frac{p}{q}$;
 - (f) $f: \mathbb{Q} \to \mathbb{Z}$ tale che $f(\frac{p}{q}) = p q$;
 - (g) $f: \mathbb{N} \to \mathbb{N}$ tale che f(n) = 0 se n è primo, f(n) = 1 se n è pari;
 - (h) $f: \mathbb{N} \to \mathbb{Z}$ tale che f(n) = 3n se n è multiplo di 2, f(n) = -3n se n è multiplo di 3;
 - (i) $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ tale che $f(n) = \{k \in \mathbb{N} : k|n\}.$
- 12. Sia $f:\{1,\ldots,n\}\to\{1,\ldots,m\}$ un'applicazione. Si provi che se n>m allora f non è iniettiva, se n< m allora f non è suriettiva.
- 13. Stabilire se le seguenti applicazioni sono iniettive e/o suriettive. (\mathbb{R}_+ denota l'insieme dei numeri reali non negativi.)
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$
 - (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^{2n+1}, n \in \mathbb{N}$
 - (c) $f: \mathbb{R}_+ \to \mathbb{R}, f(x) = \sqrt{x}$
 - (d) $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = \sin(\frac{\pi}{2}x)$ (Qui si determinino anche l'insieme immagine $f(\mathbb{Z})$, e $f(\mathbb{Z} \setminus \{0\})$.
 - (e) $f: \mathbb{N} \to \{m \in \mathbb{N} : m \text{ è pari}\}, f(n) = 2n$
 - (f) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3 2x;
 - (g) $f: \mathbb{Q} \to \mathbb{Q}$, f(x) = 3 2x;
 - (h) $f: \mathbb{Z}^2 \to \mathbb{Z}^2$, f(x,y) = (3x y, 3x + y);
 - (i) $f: \mathbb{Q}^2 \to \mathbb{Q}^2$, f(x,y) = (3x y, 3x + y);
 - (i) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$, f(n,m) = (n+1, m-5);
 - (k) $f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$, f(n) = (n+1, n-5).

14. Data la funzione $f: \mathbb{N} \to \mathbb{Z}$ definita da:

$$f(n) = \begin{cases} 3n & \text{se } n \text{ è pari} \\ n-1 & \text{se } n \text{ è dispari} \end{cases},$$

determinare $f^{-1}(0)$, $f^{-1}(1)$ e $f(\mathbb{N})$.

15. Data la funzione $f: \mathbb{Z} \to \mathbb{N}$ definita da:

$$f(n) = \begin{cases} -3n & \text{se } n \text{ è negativo} \\ n+2 & \text{se } n \text{ è positivo} \end{cases}$$

determinare $f^{-1}(0)$ e dire se f è suriettiva.

16. Data la funzione $f: \mathbb{Q}^2 \to \mathbb{Q}$ definita da:

$$f(x,y) = \begin{cases} x & \text{se } x \ge 1\\ x - y & \text{se } x < 1, \end{cases}$$

determinare $f(0,-3), f^{-1}(0), f(A)$ dove $A=\{(z,z):z\in\mathbb{Q}\}$. Dire se esiste un elemento $(a,b)\in\mathbb{Q}^2$ con b>0 tale che $f(a,b)=f(\frac{2}{7},-1)$.

17. Data la funzione $f: \mathbb{N} \to \mathbb{Z}$ definita da:

$$f(x,y) = \begin{cases} \frac{n}{2} & \text{se } n \text{ è pari} \\ -\frac{n+1}{2} & \text{se } n \text{ è dispari,} \end{cases}$$

determinare $f^{-1}(5)$, $f^{-1}(-5)$, $f^{-1}(\{-5,5\})$. Determinare $f(\mathbb{N})$ e $f(2\mathbb{N})$ (si ricordi che $k\mathbb{N}$ indica l'insieme $\{kn : n \in \mathbb{N}\}$).

- 18. Siano $f, g : \mathbb{R} \to \mathbb{R}, f(x) = 2x, g(x) = x^2$. Calcolare, se esistono, f^{-1}, g^{-1} . Calcolare poi $f \circ g, g \circ f$.
- 19. Dire se le seguenti funzioni sono invertibili e, se sì, determinare l'inversa:
 - (a) $f: \mathbb{Q} \to \mathbb{Q}, f(x) = (3x 7)/2;$
 - (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$;
 - (c) $f: \mathbb{Q}^2 \to \mathbb{Q}^2$, f(x,y) = (x-y, 2x):
 - (d) $f: \mathbb{Q}^2 \to \mathbb{Q}^2$, f(x,y) = (x-y,0);
 - (e) $f: \{1,2,3\} \to \{a,b,c\}, f(1) = c, f(2) = a, f(3) = b;$
 - (f) $f: \{1,2,3\} \to \{a,b,c\}, f(1) = c, f(2) = c, f(3) = b;$
 - (g) $f: \mathbb{Z} \to \mathbb{N}$,

$$f(x) = \begin{cases} 2x & \text{se } x \ge 0\\ -2x - 1 & \text{se } x < 0; \end{cases}$$

(h) $f: \mathbb{Q} \to \mathbb{R}$, $f(x) = \sqrt{2}x$.

- 20. Siano $f: A \to B$, $g: B \to C$ due applicazioni. Si provi che se f e g sono iniettive, allora anche $g \circ f$ lo è. Si provi che se f e g sono suriettive, allora anche $g \circ f$ è suriettiva. Fornire inoltre un esempio in cui $g \circ f$ è iniettiva (oppure suriettiva) anche se f, g non lo sono entrambe (questo dimostra che le implicazioni precedenti non si invertono).
- 21. Sia $A = \{a, b, c\}$ e $B = \{0, 1\}$. Quante e quali sono le diverse funzioni tra A e B? Dire anche quali tra quelle elencate sono suriettive, e quali iniettive.
- 22. Sia $A = \{a, b, c, d, e\}$ e $B = \{1, 2, 3\}$. Quante sono le funzioni $f : A \to B$ tali che f(a) = 1? E quante sono quelle tali che $f(b) \neq 2$?
- 23. Sia $V=\{-2,-1,0,1,2\}$. Sia $g:V\to\mathbb{R}$ la funzione definita da $g(x)=x^2+1$. Trovare l'immagine g(V) di g.
- 24. Trovare l'immagine di ciascuna delle seguenti funzioni di $\mathbb R$ in $\mathbb R$:
 - (a) $f(x) = x^3$;
 - (b) $g(x) = \sin x$;
 - (c) $h(x) = x^2 + 1$.
- 25. Siano f, g e h le funzioni definite da
 - (a) $f(x) = x^2$ dove $0 \le x \le 1$
 - (b) $g(y) = y^2 \text{ dove } 2 \le y \le 8$
 - (c) $h(z) = z^2$ dove $z \in \mathbb{R}$

Dire se sono diverse oppure no.

- 26. Una funzione costante può essere iniettiva? E suriettiva?
- 27. Su quali insiemi A la funzione $id_A:A\to A, x\mapsto x$ è iniettiva? e su quali insiemi è suriettiva?
- 28. Per una funzione $f: A \to B$ suriettiva, qual è l'immagine f(A)?
- 29. Dato un insieme A e un suo sottoinsieme B, dire se le seguenti applicazioni sono iniettive e/o suriettive:
 - (a) $f: \mathcal{P}(A) \to \mathcal{P}(A), f(S) = S \cap B;$
 - (b) $f: \mathcal{P}(A) \to \mathcal{P}(A), f(S) = S \cup B;$
 - (c) $f: \mathcal{P}(A) \to \mathcal{P}(A), f(S) = S\Delta B.$

(Notate che si possono avere situazioni diverse a seconda di come è fatto B: se è l'insieme vuoto, se coincide con A,...)

30. Date le applicazioni f e g descrivere, quando è possibile, le applicazioni $f^2 = f \circ f, \ f \circ g, \ g \circ f, \ f \circ (g \circ f)$ e $(f \circ g) \circ f$ e determinare quali sono iniettive e/o suriettive.

- (a) $f: \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$; $g: \mathbb{N} \to \mathbb{N}$, g(x) = 3x 2;
- (b) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3 2x; $g: \mathbb{Z} \to \mathbb{Z}$, g(x) = 2 3x;
- (c) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3 2x; $g: \mathbb{Z} \to \mathbb{Q}$, g(x) = 3x/2;
- (d) $f: \mathbb{Z}^2 \to \mathbb{Z}, f(x,y) = 3x y; g: \mathbb{Z} \to \mathbb{Z}^2, g(x) = (x,0);$
- (e) $f: \mathbb{Z}^2 \to \mathbb{Z}, f(x,y) = 3x y; g: \mathbb{Z} \to \mathbb{Q}^2, g(x) = (x/2, 0).$