
Advanced Parallel Architecture

Annalisa Massini - 2014/2015

Cache Coherence

2014/2015 Advanced and Parallel Architectures 2

Computer Architecture - A Quantitative Approach, Fifth Edition

Hennessy Patterson

 Chapter 5 - Thread-Level Parallelism

 Section 5.2 - Centralized Shared Memory Architectures

 Section 5.4 - Distributed Shared-Memory and Directory-Based Coherence

2014/2015 Advanced and Parallel Architectures 3

Introduction

 Our focus is on multiprocessors, which we define as
computers consisting of tightly coupled processors
whose coordination and usage are typically controlled by
a single operating system and that share memory
through a shared address space

 Observe sharing through memory implies a shared
address space, it does not necessarily mean there is a
single physical memory

2014/2015 Advanced and Parallel Architectures 4

Introduction

 The multiprocessors we consider range in size from a
dual processor to dozens of processors

 Multiprocessors include both single-chip systems with
multiple cores, that is multicore, and computers with
multiple chips, each of which may be a multicore

 Thread-level parallelism is obtained through two different
software models:

 the execution of a tightly coupled set of threads collaborating
on a single task, typically called parallel processing

 the execution of multiple, relatively independent processes
that may originate from one or more users, which is a form of
request level parallelism

2014/2015 Advanced and Parallel Architectures 5

Shared-memory multiprocessors

 Shared-memory multiprocessors
fall into two classes, depending:

 on the number of processors
involved

 a memory organization and
interconnect strategy

2014/2015 Advanced and Parallel Architectures 6

Shared-memory multiprocessors
 Symmetric multiprocessors (SMP)

 Small number of cores

 Have equal access to memory, hence
the term symmetric

 Share single memory with uniform
memory latency

 Distributed shared memory (DSM)
 Memory distributed among processors

 Non-uniform memory access/latency
(NUMA)

 Processors connected via direct
(switched) and non-direct (multi-hop)
interconnection networks

2014/2015 Advanced and Parallel Architectures 7

Shared-memory multiprocessors

 In both SMP and DSM
architectures, communication
among threads occurs through a
shared address space

 A memory reference can be
made by any processor to any
memory location, assuming it
has the correct access rights

 The term shared memory
associated with both SMP and
DSM refers to the fact that the
address space is shared.

2014/2015 Advanced and Parallel Architectures 8

Centralized Shared-Memory Architectures

 Symmetric shared-memory machines usually support the
caching of both shared and private data

 Private data are used by a single processor, whereas
shared data are used by multiple processors, providing
communication among the processors through reads and
writes of the shared data

 When a private item is cached, its location is put in cache

 When shared data are cached, the shared value may be
replicated in multiple caches

 Both reduce average access time and memory bandwidth

 Caching of shared data cache coherence problem

Advanced and Parallel Architectures 2014/2015 9

Cache Coherence

 The view of memory by two different processors:

 is through their individual caches

 without any additional precautions, could see different values

We assume a write-through cache After the value of X has been written by A,
A’s cache and the memory both contain the new value, but B’s cache does
not, and if B reads the value of X it will receive 1!

2014/2015 Advanced and Parallel Architectures 10

Cache Coherence

A memory system is coherent if

1. Processor P writes to location X, then P reads location X,
with no writes of X by another processor occurring
between the write and the read by P

 the read by P always returns the value written by P

This property preserves program order (true in uniprocessors too)

2. Processor P’ writes to location X, then P reads location X,
with no writes to X occur between the two accesses

 the read by P returns the written value (if the read and
write are sufficiently separated in time)

This property defines the notion of coherent view of memory

2014/2015 Advanced and Parallel Architectures 11

Cache Coherence

A memory system is coherent if

3. Writes to the same location are serialized; that is, two
writes to the same location by any two processors are
seen in the same order by all processors

 For example, if processors P1 and P2 are write to location X,
serializing the writes ensures that every processor will see writes
in the same order

2014/2015 Advanced and Parallel Architectures 12

Coherence and Consistency

 The three properties are sufficient to ensure coherence

 The question of when a written value will be seen is also
important

 We cannot require that a read of X instantaneously see the
value written for X by some other processor

 Example

 a write of X on one processor precedes a read of X on another
processor by a very small time

 It is impossible to ensure that the read returns the value written,
since the written data may not even have left the processor

 The issue of exactly when a written value must be seen by a
reader is defined by a memory consistency model

2014/2015 Advanced and Parallel Architectures 13

Coherence and Consistency

 Coherence defines the behavior of reads and writes to the
same memory location

 Consistency defines the behavior of reads and writes with
respect to accesses to other memory locations

 Assumptions:

 a write does not complete (and allow the next write to occur)
until all processors have seen the effect of that write

 the processor does not change the order of any write with
respect to any other memory access

 These restrictions allow the processor to reorder reads, but
forces the processor to finish a write in program order

2014/2015 Advanced and Parallel Architectures 14

Enforcing Coherence

 Program running on multiple processors will normally
have copies of the same data in several caches

 In a coherent multiprocessor, the caches provide:
 Migration: movement of data

 Replication: multiple copies of data

 Cache coherence protocols track the state of any sharing
of a data block
 Directory based

 Sharing status of each block kept in one location
 Snooping

 Each core tracks sharing status of each block

2014/2015 Advanced and Parallel Architectures 15

Coherence Protocols

 Snooping protocols became popular with
multiprocessors using microprocessors (single-core) and
caches attached to a single shared memory by a bus

 The bus provided a convenient broadcast medium to
implement the snooping protocols

 Multicore architectures changed the picture significantly,
since all multicores share some level of cache on the chip

 Thus, some designs switched to using directory protocols,
since the overhead was small

2014/2015 Advanced and Parallel Architectures 16

Snooping Coherence Protocols

 One method to maintain the coherence requirement is to
ensure that a processor has exclusive access to a data
item before it writes that item

 The other copies of the block are invalidated on a write
and the protocol is called a write invalidate

 Exclusive access ensures that no other readable or
writable copies of an item exist when the write occurs: all
other cached copies of the item are invalidated

 It is the most common protocol

2014/2015 Advanced and Parallel Architectures 17

Snooping Coherence Protocols

Example of an invalidation protocol with write-back caches in action

Consider:

 a write followed by a read by another processor

 since the write requires exclusive access, any copy held by the
reading processor must be invalidated

 when the read occurs, it misses and must fetch a new copy

2014/2015 Advanced and Parallel Architectures 18

Snooping Coherence Protocols

Example of an invalidation protocol with write-back caches in action

Observe:

 when the second miss by B occurs, processor A responds with
the value canceling the response from memory

 in addition, both the contents of B’s cache and the memory
contents of X are updated

2014/2015 Advanced and Parallel Architectures 19

Snooping Coherence Protocols

Example of an invalidation protocol with write-back caches in action

Observe:

 introduction of additional state, owner

 It indicates that a block may be shared, but the owning
processor is responsible for updating any other processors
and memory when it changes the block or replaces it

2014/2015 Advanced and Parallel Architectures 20

Snooping Coherence Protocols

 If two processors do attempt to write the same data
simultaneously:

 one of them wins the race

 the other processor’s copy to be invalidated

 For the other processor to complete its write, it must
obtain a new copy of the data, which must now contain
the updated value

 This protocol enforces write serialization

2014/2015 Advanced and Parallel Architectures 21

Snooping Coherence Protocols

 The alternative to an invalidate protocol is to update all
the cached copies of a data item when that item is
written

 This protocol is called a write update or write broadcast
protocol

 Because a write update protocol must broadcast all
writes to shared cache lines, it consumes considerably
more bandwidth

 Recent multiprocessors have opted to implement a write
invalidate protocol

2014/2015 Advanced and Parallel Architectures 22

Basic Implementation Techniques

 An invalidate protocol in a multicore is based on the use
of the bus, or another broadcast medium, to perform
invalidates

 In older multiple-chip multiprocessors, the bus used for
coherence is the shared-memory access bus

 In a multicore, the bus can be the connection between
the private caches and the shared outer cache (in the
Intel Core i7, L1 and L2 are private and L3 is shared)

 To perform an invalidate, the processor simply acquires
bus access and broadcasts the address to be invalidated
on the bus

2014/2015 Advanced and Parallel Architectures 23

Basic Implementation Techniques

 Actions

 All processors continuously snoop on the bus, watching
the addresses

 The processors check whether the address on the bus
is in their cache

 If so, the corresponding data in the cache are
invalidated

2014/2015 Advanced and Parallel Architectures 24

Basic Implementation Techniques

 We saw that:

 when a write to a block that is shared occurs, the writing
processor must acquire bus access to broadcast its invalidation

 If two processors attempt to write shared blocks at the
same time, their attempts to broadcast an invalidate
operation will be serialized when they arbitrate for the bus

 The first processor:

 obtains bus access

 causes other copies of the block it is writing to be invalidated

 If the processors were attempting to write the same block,
the serialization enforced by the bus also serializes their
writes

2014/2015 Advanced and Parallel Architectures 25

Basic Implementation Techniques

 In addition to invalidating outstanding copies of a cache
block that is being written into, we also need to locate a
data item when a cache miss occurs

 In a write-through cache, it is easy to find the recent value
of a data item:

 all written data are always sent to the memory, from which the
most recent value of a data item can always be fetched

 For a write-back cache, the problem of finding the most
recent data value is harder:

 the most recent value of a data item can be in a private cache
rather than in the shared cache or memory

2014/2015 Advanced and Parallel Architectures 26

Basic Implementation Techniques

 In addition to invalidating outstanding copies of a cache
block that is being written into, we also need to locate a
data item when a cache miss occurs

 In a write-through cache, it is easy to find the recent value
of a data item:

 all written data are always sent to the memory, from which the
most recent value of a data item can always be fetched

 For a write-back cache, the problem of finding the most
recent data value is harder:

 the most recent value of a data item can be in a private cache
rather than in the shared cache or memory

2014/2015 Advanced and Parallel Architectures 27

Basic Implementation Techniques

 Write-back caches can use the same snooping scheme both
for cache misses and for writes:

 Each processor snoops every address placed on the shared bus

 If a processor finds that it has a dirty copy of the requested cache
block, it provides that cache block in response to the read
request and causes the memory (or L3) access to be aborted

 Retrieving the cache block from another processor’s private
cache (L1-L2) takes longer than retrieving it from L3

 Write-back caches

 generate lower requirements for memory bandwidth

 can support larger numbers of faster processors

 then multicore processors use write-back at the outermost levels
of the cache

2014/2015 Advanced and Parallel Architectures 28

Basic Implementation Techniques

 The normal cache tags can be used to implement the
process of snooping

 The valid bit for each block makes invalidation easy to
implement

 Read misses, whether generated by an invalidation or by
some other event, are also straightforward since they
simply rely on the snooping capability

 For writes if there are no other cached copies of the block

 then the write need not be placed on the bus in a write-back
cache

 both the time to write and the required bandwidth are reduces

2014/2015 Advanced and Parallel Architectures 29

Basic Implementation Techniques

 To track whether or not a cache block is shared, we can add
an extra state bit associated with each cache block, just as
we have a valid bit and a dirty bit

 By adding a bit indicating whether the block is shared, we
can decide whether a write must generate an invalidate

 When a write to a block in the shared state occurs, the
cache generates an invalidation on the bus and marks the
block as exclusive

 No further invalidations will be sent by that core for that
block

2014/2015 Advanced and Parallel Architectures 30

Basic Implementation Techniques

 The core with the sole copy of a cache block is called the
owner of the cache block

 When an invalidation is sent, the state of the owner’s cache
block is changed from shared to unshared (or exclusive)

 If another processor later requests this cache block, the
state must be made shared again

 Since our snooping cache also sees any misses, it knows
when the exclusive cache block has been requested by
another processor and the state should be made shared

2014/2015 Advanced and Parallel Architectures 31

Snooping Coherence Protocols

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent to the

requesting processor

 Cache lines marked as shared or exclusive/modified
 Only writes to shared lines need an invalidate broadcast

 After this, the line is marked as exclusive

2014/2015 Advanced and Parallel Architectures 32

Snooping Coherence Protocols

 A snooping coherence protocol is usually implemented by
incorporating a finite state controller in each core

 This controller:

 responds to requests from the processor in the core and from
the bus (or other broadcast medium)

 changes the state of the selected cache block

 uses the bus to access data or to invalidate it

2014/2015 Advanced and Parallel Architectures 33

Snooping Coherence Protocols

 Consider a simple protocol with three states:

 invalid indicates that the block has been updated somewhere

 shared indicates that the block in the private cache is
potentially shared

 Modified/exclusive indicates that the block has been updated
in the private cache

2014/2015 Advanced and Parallel Architectures 34

Snooping Coherence Protocols

 Table shows the requests generated by a core for a write-
back cache

2014/2015 Advanced and Parallel Architectures 35

Snooping Coherence Protocols

 Table shows the requests generated by the bus for a
write-back cache

 When an invalidate or a write miss is placed on the bus,
any cores whose private caches have copies of the cache
block invalidate it

 2014/2015 Advanced and Parallel Architectures 36

Snooping Coherence Protocols

 Figure shows a finite-state transition diagram for a single private cache
block using a write invalidation protocol and a write-back cache

2014/2015 Advanced and Parallel Architectures 37

Snooping Coherence Protocols

 The three states of the protocol are duplicated to represent
transitions based on processor requests (left), and bus requests (right)

2014/2015 Advanced and Parallel Architectures 38

Snooping Coherence Protocols

 There is only one finite-state machine per cache, with stimuli coming
either from the attached processor or from the bus

2014/2015 Advanced and Parallel Architectures 39

Snooping Coherence Protocols

 The stimulus causing a state change is shown on the transition arcs in regular
type, and any bus actions generated as part of the state transition are shown
on the transition arc in bold

2014/2015 Advanced and Parallel Architectures 40

Snooping Coherence Protocols

 The simple cache protocol is referred to by the first letter
of the states, making it a MSI (Modified, Shared, Invalid)

 It is correct, but omits a number of complications:
 Operations are not atomic

 E.g. detect miss, acquire bus, receive a response is not atomic

 Non atomic actions creates possibility of deadlock

 One solution: processor that sends invalidate can hold bus until other
processors receive the invalidate

 Extensions:
 Add exclusive state to indicate clean block in only one cache

(MESI protocol)

 Add owned state to indicate that the associated block is
owned by that cache and out-of-date in memory

2014/2015 Advanced and Parallel Architectures 41

 Any centralized resource in
the system can become a
bottleneck:

 As the number of processors in
a multiprocessor grows

 or as the memory demands of
each processor grow,

 Shared memory bus and
snooping bandwidth is
bottleneck for scaling
symmetric multiprocessors

2014/2015 Advanced and Parallel Architectures 42

Coherence Protocols

 Solutions to bus and snooping
bottlenecks:
 Duplicating tags to have direct

snoop access without interfering
with processor cache accesses

 Place directory in outermost
cache the directory indicates
whether a given block is shared
and possibly which cores have
copies

 Interconnection networks
(crossbars or small point-to-
point networks) or multiple
buses with banked memory

 2014/2015 Advanced and Parallel Architectures 43

Coherence Protocols: Extensions

Distributed Shared-Memory

 The development of multiprocessors composed of multicores
forced designers to some form of distributed memory:

 local memory traffic is separated from remote memory traffic

 bandwidth demands on the memory system and on the
interconnection network is reduced

2014/2015 Advanced and Parallel Architectures 44

Distributed Shared-Memory

 The absence of any centralized data structure for caches is both

 fundamental advantage of a snooping-based scheme - inexpensive

 its Achilles’ heel - scalability

 The introduction of distributed memory is useful if broadcast
on every cache miss in the coherence protocol is eliminated

2014/2015 Advanced and Parallel Architectures 45

Directory-Based Coherence

 Directory protocols instead of snooping coherence protocol

 Directory keeps track of every block
 Which caches have copy of the block

 Dirty status of each block

 Implement in shared L3 cache
 Keep bit vector of size = # cores for each block in L3

 bit vector indicates which private caches may have copies of a block
in L3

 invalidations are only sent to those caches

 scheme is the one used in the Intel i7

2014/2015 Advanced and Parallel Architectures 46

Directory-Based Coherence

 A single directory used in a multicore is not scalable, even
though it avoids broadcast

 The directory must be distributed, along with the memory

 different coherence requests can go to different directories, just as
different memory requests go to different memories

2014/2015 Advanced and Parallel Architectures 47

Directory-Based Coherence

 The distribution must allow the coherence protocol knows
where to find the directory information for any cached block
to avoid broadcast

 The coherence protocol in a distributed directory is based on

 the characteristic that the sharing status of a block is always in a
single known location

 the maintenance of information that says what other nodes may be
caching the block

2014/2015 Advanced and Parallel Architectures 48

Directory-Based Coherence Protocols

 Just as with a snooping protocol, there are two primary
operations that a directory protocol must implement:

 handling a read miss

 handling a write to a shared, clean cache block

 Observe that handling a write miss to a block that is currently
shared is a simple combination of the previous two

 To implement these operations, a directory must track
the state of each cache block

2014/2015 Advanced and Parallel Architectures 49

Directory-Based Coherence Protocols

 For each block, state could be:
 Shared

 One or more nodes have the block cached, value in memory is
up-to-date

 Set of node IDs

 Uncached

 No node has a copy of the cache block

 Modified

 Exactly one node has a copy of the cache block, value in
memory is out-of-date

 Owner node ID

 Directory maintains block states and sends invalidation
messages

2014/2015 Advanced and Parallel Architectures 50

Directory-Based Coherence Protocols

 In addition to tracking the state of each potentially shared
memory block, we must track which nodes have copies
of that block, to invalidated them on a write

 The simplest way to do this is:

 To keep a bit vector for each memory block

 When the block is shared, each bit of the vector indicates
whether the corresponding processor chip (which is likely a
multicore) has a copy of that block

 The bit vector keeps also track of the owner of the block when
the block is in the exclusive state

 The state of each cache block at the individual caches is also
tracked

2014/2015 Advanced and Parallel Architectures 51

Directory-Based Coherence Protocols

 The states and transitions for the state machine at each
cache

 are identical to what we used for the snooping cache

 But the actions on a transition are slightly different

 Infact

 The processes of invalidating and locating an exclusive copy of
a data item are different, since they both involve
communication between the requesting node and the
directory and between the directory and one or more remote
nodes

 In a snooping protocol, these two steps are combined through
the use of a broadcast to all the nodes

2014/2015 Advanced and Parallel Architectures 52

Messages

The possible messages sent among nodes to maintain coherence, with
source and destination node, contents, and function of the message

P = requesting node number, A = requested address, and D = data contents

2014/2015 Advanced and Parallel Architectures 53

Directory-Based Coherence Protocols

 State transition diagram for
an individual cache block in a
directory based system

 Observe that we have also a
state diagram for the
directory entry corresponding
to each block in memory

 Requests

 by the local processor are black

 from the home directory gray

2014/2015 Advanced and Parallel Architectures 54

Directory-Based Coherence Protocols

 States are identical to those in
the snooping case

 Transitions are similar, with
explicit invalidate and write-
back requests replacing the
write misses that were
broadcast on the bus

 An attempt to write a shared
cache block is treated as a
miss

2014/2015 Advanced and Parallel Architectures 55

Directory-Based Coherence Protocols

 The state transitions for an
individual cache are
caused by read misses,
write misses, invalidates,
and data fetch requests

 An individual cache also
generates read miss, write
miss, and invalidate
messages that are sent to
the home directory

2014/2015 Advanced and Parallel Architectures 56

Directory-Based Coherence Protocols

 Like the snooping protocol
 any cache block must be in the exclusive state when it is

written, and

 any shared block must be up to date in memory

 In many multicore processors, the outermost level in the
processor cache is shared among the cores (L3 in the
Intel i7, the AMD Opteron, and the IBM Power7), and
hardware at that level maintains coherence among the
private caches of each core on the same chip, using
either an internal directory or snooping

 In a directory-based protocol, the directory implements
the other half of the coherence protocol

2014/2015 Advanced and Parallel Architectures 57

Directory-Based Coherence Protocols

 A message sent to a directory causes two different types
of actions:
 updating the directory state and

 sending additional messages to satisfy the request

 The states in the directory represent the three standard
states for a block

 Unlike in a snooping scheme, however, the directory state
indicates the state of all the cached copies of a memory
block, rather than for a single cache block

 The memory block may be
 uncached by any node,
 cached in multiple nodes and readable (shared), or
 cached exclusively and writable in exactly one node

2014/2015 Advanced and Parallel Architectures 58

Directory-Based Coherence Protocols

 For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the only
sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and becomes the

sharing node, block is now exclusive

 For shared block:
 Read miss

 The requesting node is sent the requested data from memory, node is
added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the sharing set are

sent invalidate messages, sharing set only contains requesting node,
block is now exclusive

2014/2015 Advanced and Parallel Architectures 59

Directory-Based Coherence Protocols

 For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes shared,
owner sends data to the directory, data written back to memory,
sharers set contains old owner and requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the value to

the directory, requestor becomes new owner, block remains
exclusive

2014/2015 Advanced and Parallel Architectures 60

