Advanced and parallel architectures Cognome Nome
Prof. A. Massini

Exam —June 26, 2015

Exercise 1a (2 points)

Exercise 1b (4 points)

Exercise 2 (3 points)

Exercise 3 (4 points)

Part A

Exercise 4a (3 points)

Exercise 4b (3 points)

Exercise 4c (3 points)

Question 1 (5 points)

Question 2 (5 points)

Total (32 points)

Exercise 1a (2 points) — Number representation
Given the values A=00 1000 11 00 10 and B=11 10 10 01 11 01 in the signed RB representation, convert A and b in decimal.

Exercise 1b (4 points) — Number representation
Describe the procedure to verify if a value in the RB (Redundant Binary) representation is equal to 0.
Show step by step how to apply the procedure to verify if A+B (Exercise 1a) is equal to zero.

Exercise 2 (3 points) — Instruction pipeline

Consider the following loop expressed in a high level language:
for (1 =0; i < N; 1 ++) {

vectA[i] = vectB[i]
vectB[1] = vectB[i] + K1 + K2;
vectC[i] = vectB[i]

}

The program has been compiled in MIPS assembly code assuming that registers $St6 and $t7 have been initialized with values 0 and 4N respectively.
The symbols VECTA, VECTB and VECTC are 16-bit constant.

Let us consider the loop executed by 5-stage pipelined MIPS processor without any optimisation in the pipeline.
1. Identify the Hazard Type (Data Hazard or Control Hazard) in the last column

2. In the first column identify the number of stalls to be inserted before each instruction (or between stages IF and ID of each instruction) necessary to solve the hazards
3. For each hazard, add an ARROW to indicate the pipeline stages involved in the hazard

Num. INSTRUCTION Ci C2 C3 C4 C5h C7 C6 C8 C9 | C10 | C11 | C12 | C13 |Hazard
Stalls Type
beq $t6,$t7,END IF ID EX ME | WB

1w $t2,VECTB (5t6) IF ID EX ME | WB

sw $t2,VECTA ($t6) IF ID EX ME | WB

addi $t2,5t2,Kl1 IF ID EX ME | WB

addi $t2,5t2,K2 IF ID EX ME | WB

sw $t2,VECTB ($t6) IF ID EX ME | WB

sw $t2,VECTC ($t6) IF ID EX ME | WB

addi $t6,$t6,4 IF ID EX ME | WB

j FOR IF ID EX ME | WB

Exercise 3 (4 points) — Pipelined operations

Show the scheme and the execution of the pipelined multiplications: 3x4 and (-2)x3. Verify the results.

Exercise 4a (3 points) — Interconnection networks

01234567
Complete the scheme of the Butterfly and Baseline and explain how works the self-routing. Show the switch setting to realize permutation P = (j

72610435

oo
oo
oo
oo
NN
oo

Exercise 4b (3 points) — Interconnection networks

Complete the scheme of the Baseline-Baseline™ and on a Butterfly-Butterfly*. Show the switch setting to realize permutation P on a Baseline-Baseline™ and on a Butterfly-
Butterfly™ and explain how it is obtained.

NN
oo
NN
oo
oo
oo
NN
NN
oo
NN

Exercise 4c (3 points) — Interconnection networks

Draw a Hypercube of dimension 4 and show (on different pictures) the possible routings between nodes 1110 and 0010.
Explain how the paths are obtained.

Question 1 (5 points) Question 2 (5 points)

Explain what is an interconnection network and its feature (such as node Describe the Modified Number System MSD.
degree, diameter, scalability, routing algorithm).

Advanced and parallel architectures Cognome Nome
Prof. A. Massini

Exam - June 26, 2015

Exercise 1a (2 points)

Exercise 1b (3 points)

Exercise 2a (2 points)

Exercise 2b (2 points)

Part B

Exercise 3 (4 points)

Exercise 4 (4 points)

Exercise 5a (2 points)

Exercise 5b (4 points)

Question 1 (5 points)

Question 2 (5 points)

Total (33 points)

Exercise 1a (2 points) — GPU

Given a matrix A of size NxN, the following code compute the transpose Y of A by using the 1D indexing instead of the 2D one.

void transpose (float in[][], float out[][], int N)
{
for (int j=0; J < N; Jj++)

for(int i=0; i < N; i++)

Y[1i*N+j] = A[J*N+1i];

}

Parallelize over rows, 1 thread per row and replace outer loop with index calculation (write the expression of i in the following code)

global void gpuTranspose kernel (int rows, int cols, float *in, float *out)
{
int i, j;

i =

for (int j=0; J < N; J++)

out [i * rows + jJ] = in [J * cols + 1 1;

Explain.

Exercise 1b (3 points) — GPU

Consider a matrix 1500x1500. You would like to assign one
thread to each matrix element. You would like your thread
blocks to be square. How would you select the grid
dimensions and block dimensions of your kernel to minimize
the number of idle threads on a device having compute
capability 3.0?

And on a device having compute capability 1.3?

Technical specifications

Compute capability (version)

10[11]212]13] 2x [30][35][37[50]52

Maximum dimensionality of grid of thread blocks 2 3
Maximum x-dimension of a grid of thread blocks 65535 | 2%
Maximum y-, or z-dimension of a grid of thread blocks 65535
Maximum dimensionality of thread block 3
Maximum x- or y-dimension of a block 512 1024
Maximum z-dimension of a block 64
Maximum number of threads per block 512 1024
Warp size 32
Maximum number of resident blocks per multiprocessor 8 16 | 32
Maximum number of resident warps per multiprocessor 24 32 48 64
Maximum number of resident threads per multiprocessor 768 1024 1536 2048

Technical specifications 1.0 11[12]13] 2x [30][35[37]50]52

Compute capability (version)

Exercise 2a (2 points) — Loop dependences
In the following loop, find all the true dependences, output dependences and antidependences.
Eliminate the output dependences and antidependences by renaming.

for (i=1; i<=n; 1i++)

{

Z[11=X[1]1+2; *S1*\
Wiil=Y[i]l-1; *S2*\
X[1]=U[1i]+V[i]; *83*\
X[1]=2[1]1+3; *S4+*\
Y[i]=X[1]*2; *S5%\
}

Exercise 2b (2 points) — Loop dependences

In the following loops find the loop carried dependences with respect to index i and/or index j

for (i=1; i<n; i++) {
ali] = al[i-1] + 1; *S1*\
bli] = alil; *S2*\
}
for (i=1; i<n; i++)
for (j=1; 3< n; J++)
ali]l [3] = alil[3-1] + 1; *83*\

for (i=1; i<n; i++)
for (j=1; j< n; Jj++)
S4: alil([j] = ali-11[J] + 1; *S4*\

Exercise 3 (4 points) - Data Flow Machine

Consider the computation executed in the loop:
for (i =0; 1 < N; i ++) {

I~

vectA[i] vectB[1]
vectB[1] = vectB[i] + K1 + K2;
vectC[1i] vectB[1i]

}
where vectA, vectB and vect C have size N=3.

Write the instructions needed on a Dataflow Machine to obtain the three vectors, having vector, K1 and K2 as input, and eliminating the for loop.
Group the instructions according to the parallel steps, and draw the diagram for the execution.

Exercise 4 (4 points) - Cache coherence

Consider a multicore multiprocessor implemented as a symmetric shared-memory architecture, as illustrated in the figure.

Each processor has a single, private cache with coherence maintained using the snooping coherence protocol. Each cache is direct-mapped, with four blocks each

holding two words. The coherence states are denoted M, S, and | (Modified, Shared, and Invalid).

Each part of this exercise specifies
a sequence of one or more CPU
operations of the form:

P#: <op> <address> [<value>]
where P# designates the CPU (e.g.,
P0), <op> is the CPU operation
(e.g., read or write), <address>
denotes the memory address, and
<value> indicates the new word to
be assigned on a write operation.

For each part of this exercise,
assume the initial cache and
memory state as illustrated in the
figure and treat actions as applied
one after another starting from
the initial state shown in the
figure.

Show in the table for the results:

- miss/hit

- the coherence state before the
action

- the CPU processor Pi and cache
block Bj

- the changed state (i.e., coherence

PO P1 P2 P3
Coherency | Address Data Coherency | Address Data Coherency | Address Data Coherency | Address Data
state tag state tag state tag state tag
BO S 116 00 | 20 BO | 100 00 | 08 BO S 116 00 | 20 BO M 100 00 | 24
Bl M 120 00 | 32 Bl [120 00 | 28 Bl [120 00 | 28 Bl [120 00 | 28
B2 | 124 00 | 12 B2 M 124 00 | 20 B2 M 108 00 | 36 B2 | 108 00 | 32
B3 S 112 16 B3 S 112 00 | 16 B3 S 112 00 | 16 B3 S 112 00 | 16

!

1

1?

§

On chip interconnect (with coherency manager)

state, tags, and data) of the caches and memory after the given action.

Specify the value returned by a read operation.

Memory

Address Data
100 00 08
104 00 | 04
108 00 | 08
112 00 | 16
116 00 | 20
120 00 | 28
124 00 | 36

a) P1:write 120 €< 24

hit/miss

state
before

Pi.Bj (state, tag, datawords)

b) PO: write 104 €< 08

hit/miss

state
before

Pi.Bj (state, tag, datawords)

c) P3:read 108

hit/miss

state
before

Pi.Bj (state, tag, datawords)

d) P2:write 100 € 20

hit/miss

state
before

Pi.Bj (state, tag, datawords)

Comments

Exercise 5a (2 points) - Performance
Consider 3 processors P1, P2 and P3 with clock rates and CPI given below, are running the same program:

clock rate| CPI
P1 2 GHz 1.5
P2 1.5GHz | 1.0
P3 3 GHz 2.5

Which processor will have the best performance?

Exercise 5b (4 points) — Amdhal Law

Three enhancements with the following speedups are proposed for a new architecture:

Speedup; =30

Speedup, =20

Speedup; =10

Assume for some benchmark, the fraction of use is 15% for each of enhancements 1 and 2 and 70% for enhancement 3. We want to maximize performance. If only one
enhancement can be implemented, which should it be? If two enhancements can be implemented, which should be chosen?

Question 1 (5 points) Question 2 (5 points)

Explain the Amdhal Law and Performance Equation. Describe the Vector Architecture.

