

Advanced and parallel architectures Cognome Nome

Prof. A. Massini _________________________________

Exam – July 13, 2015

Part A

Exercise 1a (2 points)

Exercise 1b (4 points)
Exercise 2 (3 points)

Exercise 3 (3 points)

Exercise 4a (3 points)

Exercise 4b (3 points)
Exercise 4c (3 points)

Question 1 (5 points)

Question 2 (5 points)

Total (31 points)

Exercise 1a (2 points) – Number representation
Given the values A= 00 10 01 10 01 11 and B= 11 10 00 11 00 01 in the signed RB (Redundant Binary) representation, convert A and B in decimal.

Exercise 1b (4 points) – Number representation
Describe the procedure to compute the opposite of a number in the RB (Redundant Binary).
Show step by step how to apply the procedure to compute -B (given in Exercise 1a) .

Exercise 2 (3 points) – Instruction pipeline
Consider the following loop expressed in a high level language:
for (i =0; i < N; i ++) 

vectC[i] = vectA[i] + vectB[i] + vectC[i];



The program has been compiled in MIPS assembly code assuming that registers $t6 and $t7 have been initialized with values 0 and 4N respectively.
The symbols VECTA, VECTB and VECTC are 16-bit constant.
Let us consider the loop executed by 5-stage pipelined MIPS processor without any optimisation in the pipeline.
1. Identify the Hazard Type (Data Hazard or Control Hazard) in the last column
2. In the first column identify the number of stalls to be inserted before each instruction (or between stages IF and ID of each instruction) necessary to solve the hazards
3. For each hazard, add an ARROW to indicate the pipeline stages involved in the hazard

Num.

Stalls

INSTRUCTION C1 C2 C3 C4 C5 C7 C6 C8 C9 C10 C11 C12 Hazard

Type

 FOR: FOR: lw $t2,VECTA($t6) IF ID EX ME WB

 lw $t3,VECTB($t6) IF ID EX ME WB

 lw $t4,VECTC($t6) IF ID EX ME WB

 add $t3,$t2,$t3 IF ID EX ME WB

 add $t4,$t3,$t4 IF ID EX ME WB

 sw $t4,VECTC($t6) IF ID EX ME WB

 addi $t6,$t6,4 IF ID EX ME WB

 blt $t6,$t7, FOR IF ID EX ME WB

Exercise 3 (3 points) – Pipelined operations

Show the scheme and the execution of the pipelined addition: 13+10, and verify the results.

Exercise 4a (3 points) – Interconnection networks

Complete the scheme of the Butterfly and Baseline networks of size N=8.

Write the permutation obtained by swapping the most MSB and the LSB in the binary representation of inputs (in the case of 3 bit): 









67452301
P

Show if the Butterfly and Baseline Networks can realize this permutation, by showing the switch setting, using the self-routing.

Exercise 4a (3 points) – Interconnection networks

Complete the scheme of the Butterfly and Baseline networks of size N=8.

Write the permutation obtained by rotating right the binary representation of inputs (in the case of 3 bit): 









67452301
P

Show if the Butterfly and Baseline Networks can realize this permutation, by showing the switch setting, using the self-routing.

Exercise 4c (3 points) – Interconnection networks

Design a Clos network of size 50 x50, using modules 10x10 in both cases , strictly non blocking and rearrangeable.

Question 1 (5 points) Question 2 (5 points)

Explain what are blocking and rearrangeable interconnection networks, also
giving examples.

Describe the instruction pipeline.

Advanced and parallel architectures Cognome Nome

Prof. A. Massini _________________________________

Exam – July 13, 2015

Part B

Exercise 1a (2 points)
Exercise 1b (3 points)

Exercise 1c (3 points)

Exercise 2 (3points)

Exercise 3 (4 points)
Exercise 4a (2 points)

Exercise 4b (3 points)

Exercise 4c (3 points)

Question 1 (5 points)

Question 2 (5 points)

Total (33 points)

Exercise 1a (2 points) – GPU

We want to use each thread to calculate four (adjacent) elements of a vector addition.
Assume that a variable i should be the index for the first element to be processed by a thread.
What would be the expression for mapping the thread/block indices to data index?

Explain.

Exercise 1b (3 points) – GPU
Consider a tridimensional matrix of size 1200x1200x1200.
You would like to assign one thread to each matrix element.
You would like your thread blocks to be cubic.
How would you select the grid dimensions and block
dimensions of your kernel to minimize the number of idle
threads on a device having compute capability 3.0?

Exercise 1c (3 points) – GPU
Consider the tridimensional matrix of size 1200x1200x1200, as in Exercise 1b. You would like to assign one thread to each matrix element.
How would you select the grid dimensions and block dimensions of your kernel if you want tridimensional blocks of maximum size (and you do not need blocks are

cubic), on a device having compute capability 3.0?

Technical specifications Compute capability (version)

1.0 1.1 1.2 1.3 2.x 3.0 3.5 3.7 5.0 5.2

Maximum dimensionality of grid of thread blocks 2 3

Maximum x-dimension of a grid of thread blocks 65535 231-1

Maximum y-, or z-dimension of a grid of thread blocks 65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32

Maximum number of resident blocks per multiprocessor 8 16 32

Maximum number of resident warps per multiprocessor 24 32 48 64

Maximum number of resident threads per multiprocessor 768 1024 1536 2048

Technical specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5 3.7 5.0 5.2

Compute capability (version)

Exercise 2 (3 points) – Loop dependences
In the following loop, find all the true dependences, output dependences and antidependences, the loop carried dependences.
Eliminate the output dependences and antidependences by renaming.

for (i=1; i<=n; i++)

{

A[i]=B[i]+2; *S1*\

B[i]=C[i]*2; *S2*\

D[i]=E[i]+C[i]; *S3*\

E[i]=B[i]+E[i-1]; *S4*\

B[i]=A[i]/2; *S5*\

}

Exercise 3 (4 points) - Cache coherence

Consider a multicore multiprocessor implemented as a symmetric shared-memory architecture, as illustrated in the figure.

Each processor has a single, private cache with coherence maintained using the snooping coherence protocol. Each cache is direct-mapped, with four blocks each
holding two words. The coherence states are denoted M, S, and I (Modified, Shared, and Invalid).

Each part of this exercise specifies
a sequence of one or more CPU
operations of the form:
P#: <op> <address> [<value>]
where P# designates the CPU (e.g.,
P0), <op> is the CPU operation
(e.g., read or write), <address>
denotes the memory address, and
<value> indicates the new word to
be assigned on a write operation.

For each part of this exercise,
assume the initial cache and
memory state as illustrated in the
figure and treat actions as applied
one after another starting from
the initial state shown in the
figure.

Show in the table for the results:
- miss/hit
- the coherence state before the
action
- the CPU processor Pi and cache
block Bj
- the changed state (i.e., coherence
state, tags, and data) of the caches and memory after the given action.

Specify the value returned by a read operation.

P0

 Coherency
state

Address
tag

Data

B0 S 100 00 08

B1 M 120 00 32

B2 S 124 00 12

B3 S 112 00 16

P1

 Coherency
state

Address
tag

Data

B0 S 100 00 08

B1 I 120 00 28

B2 S 124 00 12

B3 S 112 00 16

P3

 Coherency
state

Address
tag

Data

B0 S 100 00 08

B1 I 120 00 28

B2 I 108 00 32

B3 S 112 00 16

On chip interconnect (with coherency manager)

Memory

Address Data

… … …

100 00 08

104 00 04

108 00 08

112 00 16

116 00 20

120 00 28

124 00 12

… … …

P2

 Coherency
state

Address
tag

Data

B0 M 116 00 32

B1 I 120 00 28

B2 M 108 00 36

B3 S 112 00 16

a) P2: write 100  24

hit/miss state
before

Pi.Bj (state, tag, datawords)

b) P0: read 100

hit/miss state
before

Pi.Bj (state, tag, datawords)

c) P1: write124  20

hit/miss state
before

Pi.Bj (state, tag, datawords)

d) P2: write 124  32

hit/miss state
before

Pi.Bj (state, tag, datawords)

Comments

Exercise 4a (2 points) - Performance
Consider 3 processors P1, P2 and P3 with clock rates and CPI given below, are running the same program:

Which processor will have the best performance?

 clock rate CPI

P1 2.5 GHz 1.4

P2 1.7 GHz 1.2

P3 2.7 GHz 2.1

Exercise 4b (3 points) – Amdhal Law
Three enhancements with the following speedups are proposed for a new architecture:
Speedup1 = 15
Speedup2 = 25
Speedup3 = 30
Assume for some benchmark, the fraction of use is 60% for each of enhancements 1, 25% for enhancement 2 and 20% for enhancement 3.
What enhancement should be implemented to maximize performance?

Exercise 4c (3 points) – Amdhal Law
Assume that we are considering enhancing a machine by adding vector hardware to it. When a computation is run in vector mode on the vector hardware, it is 15 times
faster than the normal mode of execution. We call the percentage of time that could be spent using vector mode the percentage of vectorization.

Suppose you have measured the percentage of vectorization of the program to be 60%. The hardware design group estimates it can speed up the vector hardware even
more with significant additional investment. You wonder whether the compiler crew could increase the percentage of vectorization, instead. What percentage of
vectorization would the compiler team need to achieve in order to equal an addition 2× speedup in the vector unit (beyond the initial 15x)?

Question 1 (5 points) Question 2 (5 points)

Describe the memory hierarchy in a GPU.

Describe the Data Flow Machine.
