
Advanced Parallel Architecture
Lesson 2

Annalisa Massini - 2016/2017

Introduction

2016/2017Advanced and Parallel Architectures2

Motivations to Parallel Architectures

 The question is:

 Which forces and trends are giving parallel architectures an
increasingly important role throughout the computing field?

 We have:

 application demands (for increased performance)

 technological trends

 architectural trends

 economics

2016/2017Advanced and Parallel Architectures3

Architectural Trends

2016/2017Advanced and Parallel Architectures4

 Advances in technology determine what is possible

 Architecture translates the potential of the technology
into performance and capability

 Two ways to improve performance:

 Parallelism - multiple operations performed in parallel

 reduction of number of cycles to execute the program

 but need for resources supporting simultaneous activities

 Locality - data references performed close to the processor

 accessing deeper levels of the storage hierarchy avoided

 but need for resources providing local storage

Architectural Trends

2016/2017Advanced and Parallel Architectures5

 These two ways compete for the same resources

 The best performance is obtained by an intermediate
strategy which devotes resources to exploit a degree of
parallelism and a degree of locality

 Indeed, parallelism and locality interact in systems of all
scales, from within a chip to across a large parallel machine

Generations of Computer

 The history of computer architecture is traditionally
divided into four generations (basic logic technology):

 Vacuum tube - 1946-1957

 Transistor - 1958-1964

 Integrated circuits

 Small scale integration - 1965 on

Up to 100 devices on a chip

 Medium scale integration - to 1971

100-3,000 devices on a chip

 Large scale integration - 1971-1977

3,000 - 100,000 devices on a chip

2016/20176 Advanced and Parallel Architectures

Generations of Computer

 The history of computer architecture is traditionally
divided into four generations (basic logic technology):

 VLSI
 Very large scale integration - 1978-1991

100,000 - 100,000,000 devices on a chip

 Ultra large scale integration - 1991-
Over 100,000,000 devices on a chip

2016/20177 Advanced and Parallel Architectures

Architectural Trends

2016/2017Advanced and Parallel Architectures8

 The most interesting period is the fourth - VLSI generation
- with its tremendous architectural advance

Tr
an

si
st

or
s

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008

i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

Architectural Trends

2016/2017Advanced and Parallel Architectures9

 The strongest delineation in VLSI generation is the kind of
parallelism that is exploited

Tr
an

si
st

or
s

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008

i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

Architectural Trends

2016/2017Advanced and Parallel Architectures10

bit-level instruction-level thread-level

parallelism parallelism parallelism

Tr
an

si
st

or
s

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008

i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

Architectural Trends

2016/2017Advanced and Parallel Architectures11

 The period up to about 1985 is dominated by
advancements in bit-level parallelism, with 4-bit
microprocessors replaced by 8-bit, 16-bit, and so on

 Doubling the width of the datapath reduces the number
of cycles required to perform a full 32-bit operation

 This trend slows once a 32-bit word size is reached in the
mid-80s

 The adoption of 64-bit operation is reached decade later

Architectural Trends

2016/2017Advanced and Parallel Architectures12

 Further increases in word-width will be driven by
demands for improved floating-point representation and
a larger address space, rather than performance

 With address space requirements growing by less than
one bit per year, the demand for 128-bit operation
appears to be well in the future

 The early microprocessor period was able to reap the
benefits of the easiest form of parallelism: bit-level
parallelism in every operation

Architectural Trends

2016/2017Advanced and Parallel Architectures13

 Inflection point in the microprocessor growth curve
corresponds to the arrival of full 32-bit word operation
combined with use of cache (late ‘80s)

 The period from the mid-80s to mid-90s is dominated by
advancements in instruction-level parallelism

 Full word operation means that the basic steps in
instruction processing (instruction decode, integer
arithmetic, and address calculation) can be performed in
a single cycle

Architectural Trends

2016/2017Advanced and Parallel Architectures14

 By using caches, the instruction fetch and data access
can also be performed in a single cycle, most of the time

 Using the RISC approach - care in the instruction set
design - it is straightforward to pipeline the stages of
instruction execution

 Effect of the RISC approach an instruction is executed
almost every cycle (on average)

 In addition, advances in compiler technology made
instruction pipelines more effective

Architectural Trends

2016/2017Advanced and Parallel Architectures15

 The mid-80s microprocessor-based computers consisted
of a set of chips:

 an integer processing unit

 a floating-point unit

 a cache controller

 SRAMs for the cache data and tag storage

 As the chip capacity increased, these components were
coalesced into a single chip - containing separate
hardware for integer arithmetic, memory operations,
branch operations, and floating-point operations -
reducing the cost of communicating among them

Architectural Trends

2016/2017Advanced and Parallel Architectures16

 In addition to pipelining individual instructions, it
became very attractive to fetch multiple instructions at
a time and issue them in parallel to distinct function
units whenever possible

 This form of instruction level parallelism - called
superscalar execution - allow to exploit the increasing
number of available chip resources

 More function units were added, more instructions were
fetched at time, and more instructions could be issued in
each clock cycle to the function units

Architectural Trends

2016/2017Advanced and Parallel Architectures17

 Instruction level parallelism approach is worthwhile if
the processor can be supplied with instructions and data
fast enough to keep it busy

 In order to satisfy this requirement, larger and larger
caches were placed on-chip with the processor

 With the processor and cache on the same chip, the
path between the two could be made very wide to
satisfy the bandwidth requirement of multiple
instruction and data accesses per cycle

Architectural Trends

2016/2017Advanced and Parallel Architectures18

 However, as more instructions are issued each cycle,
the performance impact of each control transfer and
each cache miss becomes more significant:

 A control transfer may have to wait for the depth of the
processor pipeline - latency - until a particular instruction
reaches the end of the pipeline and determines which
instruction to execute next

 Similarly, instructions which use a value loaded from
memory may cause the processor to wait for the latency
of a cache miss

Architectural Trends

2016/2017Advanced and Parallel Architectures19

 Processor designs in the 90s deploy a variety of complex
instruction processing mechanisms in an effort to reduce
the performance degradation in superscalar processors

 Sophisticated branch prediction techniques are used to
avoid pipeline latency by guessing the direction of
control flow before branches are actually resolved

 Larger, more sophisticated caches are used to avoid the
latency of cache misses

Architectural Trends

2016/2017Advanced and Parallel Architectures20

 Instructions are scheduled dynamically and allowed to
complete out of order:

 If one instruction encounters a miss, other instructions can
proceed ahead of it as long as they do not depend on the
result of the instruction

 A larger window of instructions that are waiting to issue is
maintained within the processor

 Whenever an instruction produces a new result, several
waiting instructions may be issued to the function units

Architectural Trends

2016/2017Advanced and Parallel Architectures21

 These complex mechanisms allow the processor to
tolerate the latency of a cache-miss or pipeline
dependence when it does occur

 However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost

Architectural Trends

2016/2017Advanced and Parallel Architectures22

 In the late 90s, given the increases in chip density, the
instruction level parallelism within a single thread of
control is overcome

 The processors and their interconnect are all
implemented on a single silicon chip and the new
technology is multi-core processor

 The emphasis shifts to thread level parallelism,
parallelism available as multiple processes or multiple
threads of control within a process

Architectural Trends

2016/2017Advanced and Parallel Architectures23

bit-level instruction-level thread-level

parallelism parallelism parallelism

Tr
an

si
st

or
s

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008

i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

Architectural Trends

2016/2017Advanced and Parallel Architectures24

 By the early 2000s, CPU designers were thwarted from
achieving higher performance from instruction level
parallelism techniques

 The growing disparity between CPU operating
frequencies and main memory operating frequencies as
well as escalating CPU power dissipation implied new
instruction level parallelism techniques

 CPU designers realize that to aggregate performance of
multiple programs was more important than the
performance of a single thread or program

Architectural Trends

2016/2017Advanced and Parallel Architectures25

 There was a proliferation of dual and multiple core CMP
(chip-level multiprocessing) designs and the
corresponding parallel execution at thread level

 Examples:

 hyper-threading – 2 threads on the same pipeline executed
in parallel (up to 30% speedup)

 multi-core architectures – multiple CPUs on a single chip

 multiprocessor systems (parallel systems)

 manycore architectures (GPUs)

Supercomputers

 We have looked at the forces driving the development of
parallel architecture and tecniques in the general market

 A second, confluent set of forces is driven by the request
to achieve absolute maximum performance, or
supercomputing

 Although commercial and information processing
applications are important drivers of the high end,
historically, scientific computing has been a kind of
proving ground for innovative architecture

2016/2017Advanced and Parallel Architectures26

Supercomputers

 Starting in the mid 70’s, supercomputing was dominated
by vector processors

 Operations are executed on sequences of data elements
- vectors - rather than individual scalar data

 Vector operations permit more parallelism to be
obtained within a single thread of control

2016/2017Advanced and Parallel Architectures27

Supercomputers

 Within the vector processing approach, the single
processor performance improvement is dominated by
modest improvements in cycle time and more substantial
increases in the vector memory bandwidth

 In the microprocessor systems, we see the combined
effect of:

 increasing clock rate

 on-chip pipelined floating-point units

 increasing on-chip cache size

 increasing off-chip second-level cache size

 increasing use of instruction level parallelism

2016/2017Advanced and Parallel Architectures28

Supercomputers

 Multiprocessor architectures are adopted by both the
vector processor and microprocessor designs, but the
scale is quite different

 The microprocessor based supercomputers provided
initially about a hundred processors, increasing to
roughly a thousand from 1990 onward

2016/2017Advanced and Parallel Architectures29

Supercomputers

 Massively parallel processors (MPPs) have tracked the
microprocessor advance, with typically a lag of two
years behind the leading microprocessor-based
workstation or PC

 The performance advantage of the MPP systems over
traditional vector supercomputers is less substantial on
more complete applications owing to the relative
immaturity of the programming languages, compilers,
and algorithms

2016/2017Advanced and Parallel Architectures30

Summary: Why Parallel Architecture?

2016/2017Advanced and Parallel Architectures31

 Increasingly attractive

 Economics, technology, architecture, application demand

 Increasingly central and mainstream

 Parallelism exploited at many levels

 Instruction-level parallelism

 Multiprocessor servers

 Large-scale multiprocessors (“MPPs”)

 Same story from memory system perspective

 Increase bandwidth, reduce average latency with local memories

 Spectrum of parallel architectures make sense

 Different cost, performance and scalability

Taxonomy of Computer Architectures

 The idea of obtaining more performance by utilizing
multiple resources is quite dated

 In 1966 Michael Flynn introduced a taxonomy of
computer architectures that is still the most common
way of categorizing systems with parallel processing
capability

2016/201732 Advanced and Parallel Architectures

Taxonomy of Computer Architectures

 Machines are classified based on how many data items
they can process concurrently and how many different
instructions they can execute at the same time:

 Single Instruction, Single Data - SISD

 Single Instruction, Multiple Data - SIMD

 Multiple Instruction, Single Data - MISD

 Multiple Instruction, Multiple Data - MIMD

2016/201733 Advanced and Parallel Architectures

Single Instruction, Single Data Stream - SISD

 Single processor

 Single instruction stream

 Data stored in single memory

2016/201734 Advanced and Parallel Architectures

Single Instruction, Single Data Stream - SISD

 A single processor executes a single instruction at a time
operating on data stored in a single memory

 Uniprocessor fall into this category

 The majority of contemporary CPUs is multicore

 A single core can be considered a SISD machine

2016/201735 Advanced and Parallel Architectures

Single Instruction, Multiple Data Stream - SIMD

 A single machine
instruction controls
the simultaneous
execution of a
number of
processing elements
on a lockstep basis

 Each processing
element has an
associated data
memory

2016/201736 Advanced and Parallel Architectures

Single Instruction, Multiple Data Stream - SIMD

 Each instruction is
executed on a
different set of
data by the
different processors

 Vector processors
were the first SIMD
machines

 GPUs follow this
design at the level of
Streaming
multiprocessor

2016/201737 Advanced and Parallel Architectures

Multiple Instruction, Single Data Stream - MISD

 A sequence of data
is transmitted to a
set of processors,
each of which
executes a different
instruction sequence

 This structure is not
commercially
implemented

2016/201738 Advanced and Parallel Architectures

Multiple Instruction, Single Data Stream - MISD

 MISD computers can
be useful in
applications of a
specialized nature:

 robot vision

 when fault tolerance is
required in a system
(military or aerospace
application) data can
be processed by
multiple machines and
decisions can be made
on a majority principle

2016/201739 Advanced and Parallel Architectures

Multiple Instruction, Multiple Data Stream- MIMD

 A set of processors
simultaneously
execute different
instruction
sequences on
different data sets

 This architecture is
the most common
and widely used
form of parallel
architectures

2016/201740 Advanced and Parallel Architectures

Multiple Instruction, Multiple Data Stream- MIMD

 General purpose
processors

 Each processor can
process all
instructions
necessary

 Further classified by
method of
processor
communication

2016/201741 Advanced and Parallel Architectures

Taxonomy of Parallel Processor Architectures

2016/201742 Advanced and Parallel Architectures

Performance: speedup

2016/2017Advanced and Parallel Architectures43

 A key reference point for both the architect and the
application developer is how the use of parallelism
improves the performance of the application

 We may define the speedup on processors as

Speedup (p processors) =

 For a fixed problem size performance = 1/time

 Speedup fixed problem (p processors) =

performance (p processors)

performance (1 processor)

time (1 processor)

time (p processors)

2016/2017Advanced and Parallel Architectures44

 To complete the introduction to the fundamental issues
of parallel computer architecture, we need to understand
performance at many levels of design

 Fundamentally, there are three performance metrics:

 Latency: time taken for an operation

 Bandwidth: rate of performing operations

 Cost: impact on execution time of program

Communication Performance

2016/2017Advanced and Parallel Architectures45

 If processor does one thing at a time:

 bandwidth (operation per second) is about 1/latency

 cost is simply latency x number of operations

 But actually it is more complex in modern systems

 Modern computer systems do many different operations
at once and the relationship between these performance
metrics is much more complex

Communication Performance

2016/2017Advanced and Parallel Architectures46

 Characteristics apply to overall operations, as well as
individual components of a system

 Since the unique property of parallel computer
architecture is communication, the operations that we
are concerned with most often are data transfers

Communication Performance

2016/2017Advanced and Parallel Architectures47

 The time for a data transfer operation is generally
described by a linear model:

 Transfer time (n) = T0 + n/B
 n is the amount of data (e.g. number of bytes),

 B is the transfer rate of the component moving the data (e.g. bytes
per second),

 the constant term T0 is the start-up cost

 This is a very convenient model, and it is used to describe
a diverse collection of operations: messages, memory
accesses, bus transactions, and vector operations

Linear Model of Data Transfer Latency

2016/2017Advanced and Parallel Architectures48

 It applies in many aspects of traditional computer
architecture, as well, and we can observe:

 For memory operations, it is essentially the access time

 For bus transactions, it reflects the bus arbitration and
command phases

 For any sort of pipelined operation, including pipelined
instruction processing or vector operations, it is the time to
fill pipeline

Linear Model of Data Transfer Latency

2016/2017Advanced and Parallel Architectures49

 But a linear model is not enough:

 It does not give any indication when the next such operation
can be initiated

 It does not indicate whether other useful work can be
performed during the transfer

 These other factors depend on how the transfer is
performed:

 need to know how transfer is performed

Linear Model of Data Transfer Latency

2016/2017Advanced and Parallel Architectures50

 The data transfer in which we are most interested is the
one that occurs across the network in parallel machines

 It is initiated by the processor through the
communication assist

 The essential components of this operation can be
described by the following simple model:

Communication Time (n)= Overhead + Network Delay + Occupancy

Communication Cost Model

2016/2017Advanced and Parallel Architectures51

Communication Time (n)= Overhead + Network Delay + Occupancy

 The Overhead is the time the processor spends initiating the
transfer

 It may be a fixed cost, if the processor simply has to tell the
communication assist to start

 It may be linear in n, if the processor has to copy the data into the assist

 This is time the processor:

 is busy with the communication event

 cannot do other useful work or initiate other communication

Communication Cost Model

2016/2017Advanced and Parallel Architectures52

Communication Time (n)= Overhead + Network Delay + Occupancy

 The remaining portions of the communication time is
considered the network latency; it is the part that can be
hidden by other processor operations

Communication Cost Model

2016/2017Advanced and Parallel Architectures53

Communication Time (n)= Overhead + Network Delay + Occupancy

 The Occupancy is the time it takes for the data to pass through
the slowest component on the communication path:

 The data will occupy other resources, including buffers, switches, and the
communication assist

 Often the communication assist is the bottleneck that determines the
occupancy

 The occupancy limits how frequently communication operations can be
initiated

 The next data transfer will have to wait until the critical resource is no
longer occupied before it can use that same resource

Communication Cost Model

2016/2017Advanced and Parallel Architectures54

Communication Time (n)= Overhead + Network Delay + Occupancy

 The remaining communication time is the Network Delay, which
includes:

 the time for a bit to be routed across the actual network

 other factors, such as the time to get through the communication assist

 From the processors viewpoint, the specific hardware components
contributing to network delay are indistinguishable

Communication Cost Model

2016/2017Advanced and Parallel Architectures55

 A useful model connecting the program characteristics to
the hardware performance is given by

Communication Cost = frequency * (Comm time - overlap)

 The frequency of communication:

 is defined as the number of communication operations per unit
of work in the program

 it depends on many programming factors and many hardware
design factors

Communication Cost Model

2016/2017Advanced and Parallel Architectures56

Communication Cost = frequency * (Comm time - overlap)

Note that:

 Hardware may:

 limit the transfer size and determine the min number of messages

 replicate data or migrate it to where it is used

 A certain amount of communication is inherent to parallel
execution, since data must be shared and processors must
coordinate their work

 A machine can support programs with a high communication
frequency if the other parts of the communication cost are
small: low overhead, low network delay, and small occupancy

Communication Cost Model

