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Motivations to Parallel Architectures

 The question is:

 Which forces and trends are giving parallel architectures an 
increasingly important role throughout the computing field? 

 We have:

 application demands (for increased performance) 

 technological trends 

 architectural trends 

 economics
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Architectural Trends
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 Advances in technology determine what is possible

 Architecture translates the potential of the technology 
into performance and capability

 Two ways to improve performance:

 Parallelism - multiple operations performed in parallel 

 reduction of number of cycles to execute the program 

 but need for resources supporting simultaneous activities 

 Locality - data references performed close to the processor

 accessing deeper levels of the storage hierarchy avoided

 but need for resources providing local storage 



Architectural Trends
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 These two ways compete for the same resources

 The best performance is obtained by an intermediate 
strategy which devotes resources to exploit a degree of 
parallelism and a degree of locality

 Indeed, parallelism and locality interact in systems of all 
scales, from within a chip to across a large parallel machine



Generations of Computer

 The history of computer architecture is traditionally 
divided into four generations (basic logic technology): 

 Vacuum tube - 1946-1957

 Transistor - 1958-1964

 Integrated circuits

 Small scale integration - 1965 on

Up to 100 devices on a chip

 Medium scale integration - to 1971

100-3,000 devices on a chip

 Large scale integration - 1971-1977

3,000 - 100,000 devices on a chip
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Generations of Computer

 The history of computer architecture is traditionally 
divided into four generations (basic logic technology): 

 VLSI
 Very large scale integration - 1978-1991

100,000 - 100,000,000 devices on a chip

 Ultra large scale integration - 1991-
Over 100,000,000 devices on a chip
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Architectural Trends
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 The most interesting period is the fourth - VLSI generation 
- with its tremendous architectural advance
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 The strongest delineation in VLSI generation is the kind of 
parallelism that is exploited
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 The period up to about 1985 is dominated by 
advancements in bit-level parallelism, with 4-bit 
microprocessors replaced by 8-bit, 16-bit, and so on 

 Doubling the width of the datapath reduces the number 
of cycles required to perform a full 32-bit operation 

 This trend slows once a 32-bit word size is reached in the 
mid-80s

 The adoption of 64-bit operation is reached decade later
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 Further increases in word-width will be driven by 
demands for improved floating-point representation and 
a larger address space, rather than performance

 With address space requirements growing by less than 
one bit per year, the demand for 128-bit operation 
appears to be well in the future

 The early microprocessor period was able to reap the 
benefits of the easiest form of parallelism: bit-level 
parallelism in every operation
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 Inflection point in the microprocessor growth curve 
corresponds to the arrival of full 32-bit word operation 
combined with use of cache (late ‘80s)

 The period from the mid-80s to mid-90s is dominated by 
advancements in instruction-level parallelism

 Full word operation means that the basic steps in 
instruction processing (instruction decode, integer 
arithmetic, and address calculation) can be performed in 
a single cycle
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 By using caches, the instruction fetch and data access 
can also be performed in a single cycle, most of the time

 Using the RISC approach - care in the instruction set 
design - it is straightforward to pipeline the stages of 
instruction execution 

 Effect of the RISC approach  an instruction is executed 
almost every cycle (on average)

 In addition, advances in compiler technology made 
instruction pipelines more effective
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 The mid-80s microprocessor-based computers consisted 
of a set of chips: 

 an integer processing unit

 a floating-point unit

 a cache controller

 SRAMs for the cache data and tag storage

 As the chip capacity increased, these components were 
coalesced into a single chip - containing separate 
hardware for integer arithmetic, memory operations, 
branch operations, and floating-point operations -
reducing the cost of communicating among them
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 In addition to pipelining individual instructions, it 
became very attractive to fetch multiple instructions at 
a time and issue them in parallel to distinct function 
units whenever possible

 This form of instruction level parallelism - called 
superscalar execution - allow to exploit the increasing 
number of available chip resources

 More function units were added, more instructions were 
fetched at time, and more instructions could be issued in 
each clock cycle to the function units
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 Instruction level parallelism approach is worthwhile if 
the processor can be supplied with instructions and data 
fast enough to keep it busy

 In order to satisfy this requirement, larger and larger 
caches were placed on-chip with the processor

 With the processor and cache on the same chip, the 
path between the two could be made very wide to 
satisfy the bandwidth requirement of multiple 
instruction and data accesses per cycle
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 However, as more instructions are issued each cycle, 
the performance impact of each control transfer and 
each cache miss becomes more significant:

 A control transfer may have to wait for the depth of the 
processor pipeline - latency - until a particular instruction 
reaches the end of the pipeline and determines which 
instruction to execute next

 Similarly, instructions which use a value loaded from 
memory may cause the processor to wait for the latency 
of a cache miss
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 Processor designs in the 90s deploy a variety of complex 
instruction processing mechanisms in an effort to reduce 
the performance degradation in superscalar processors

 Sophisticated branch prediction techniques are used to 
avoid pipeline latency by guessing the direction of 
control flow before branches are actually resolved

 Larger, more sophisticated caches are used to avoid the 
latency of cache misses
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 Instructions are scheduled dynamically and allowed to 
complete out of order:

 If one instruction encounters a miss, other instructions can 
proceed ahead of it as long as they do not depend on the 
result of the instruction

 A larger window of instructions that are waiting to issue is 
maintained within the processor 

 Whenever an instruction produces a new result, several 
waiting instructions may be issued to the function units 
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 These complex mechanisms allow the processor to 
tolerate the latency of a cache-miss or pipeline 
dependence when it does occur

 However, each of these mechanisms place a heavy 
demand on chip resources and a very heavy design cost
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 In the late 90s, given the increases in chip density, the 
instruction level parallelism within a single thread of 
control is overcome

 The processors and their interconnect are all 
implemented on a single silicon chip and the new 
technology is multi-core processor 

 The emphasis shifts to thread level parallelism, 
parallelism available as multiple processes or multiple 
threads of control within a process
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 By the early 2000s, CPU designers were thwarted from 
achieving higher performance from instruction level 
parallelism techniques

 The growing disparity between CPU operating 
frequencies and main memory operating frequencies as 
well as escalating CPU power dissipation implied new 
instruction level parallelism techniques

 CPU designers realize that to aggregate performance of 
multiple programs was more important than the 
performance of a single thread or program
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 There was a proliferation of dual and multiple core CMP 
(chip-level multiprocessing) designs and the 
corresponding parallel execution at thread level

 Examples:

 hyper-threading – 2 threads on the same pipeline executed 
in parallel (up to 30% speedup)

 multi-core architectures – multiple CPUs on a single chip

 multiprocessor systems (parallel systems)

 manycore architectures (GPUs)



Supercomputers

 We have looked at the forces driving the development of 
parallel architecture and tecniques in the general market

 A second, confluent set of forces is driven by the request 
to achieve absolute maximum performance, or 
supercomputing

 Although commercial and information processing 
applications are important drivers of the high end, 
historically, scientific computing has been a kind of 
proving ground for innovative architecture
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Supercomputers

 Starting in the mid 70’s, supercomputing was dominated 
by vector processors

 Operations are executed on sequences of data elements
- vectors - rather than individual scalar data

 Vector operations permit more parallelism to be 
obtained within a single thread of control
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Supercomputers

 Within the vector processing approach, the single 
processor performance improvement is dominated by 
modest improvements in cycle time and more substantial 
increases in the vector memory bandwidth

 In the microprocessor systems, we see the combined 
effect of:

 increasing clock rate

 on-chip pipelined floating-point units

 increasing on-chip cache size

 increasing off-chip second-level cache size

 increasing use of instruction level parallelism
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Supercomputers

 Multiprocessor architectures are adopted by both the 
vector processor and microprocessor designs, but the 
scale is quite different

 The microprocessor based supercomputers provided 
initially about a hundred processors, increasing to 
roughly a thousand from 1990 onward
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Supercomputers

 Massively parallel processors (MPPs) have tracked the 
microprocessor advance, with typically a lag of two 
years behind the leading microprocessor-based 
workstation or PC

 The performance advantage of the MPP systems over 
traditional vector supercomputers is less substantial on 
more complete applications owing to the relative 
immaturity of the programming languages, compilers, 
and algorithms
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Summary: Why Parallel Architecture?
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 Increasingly attractive

 Economics, technology, architecture, application demand

 Increasingly central and mainstream

 Parallelism exploited at many levels

 Instruction-level parallelism

 Multiprocessor servers

 Large-scale multiprocessors (“MPPs”)

 Same story from memory system perspective

 Increase bandwidth, reduce average latency with local memories

 Spectrum of parallel architectures make sense

 Different cost, performance and scalability



Taxonomy of Computer Architectures

 The idea of obtaining more performance by utilizing 
multiple resources is quite dated

 In 1966 Michael Flynn introduced a taxonomy of 
computer architectures that is still the most common 
way of categorizing systems with parallel processing 
capability 
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Taxonomy of Computer Architectures

 Machines are classified based on how many data items 
they can process concurrently and how many different 
instructions they can execute at the same time:

 Single Instruction, Single Data - SISD

 Single Instruction, Multiple Data - SIMD

 Multiple Instruction, Single Data - MISD

 Multiple Instruction, Multiple Data - MIMD
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Single Instruction, Single Data Stream - SISD

 Single processor

 Single instruction stream

 Data stored in single memory
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Single Instruction, Single Data Stream - SISD

 A single processor executes a single instruction at a time 
operating on data stored in a single memory

 Uniprocessor fall into this category

 The majority of contemporary CPUs is multicore

 A single core can be considered a SISD machine
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Single Instruction, Multiple Data Stream - SIMD

 A single machine
instruction controls 
the simultaneous 
execution of a 
number of 
processing elements 
on a lockstep basis

 Each processing 
element has an 
associated data 
memory
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Single Instruction, Multiple Data Stream - SIMD

 Each instruction is 
executed on a
different set of 
data by the
different processors

 Vector processors 
were the first SIMD 
machines

 GPUs follow this 
design at the level of 
Streaming 
multiprocessor
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Multiple Instruction, Single Data Stream - MISD

 A sequence of data 
is transmitted to a 
set of processors, 
each of which 
executes a different
instruction sequence

 This structure is not 
commercially
implemented 
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Multiple Instruction, Single Data Stream - MISD

 MISD computers can 
be useful in 
applications of a 
specialized nature:

 robot vision

 when fault tolerance is 
required in a system 
(military or aerospace 
application) data can 
be processed by 
multiple machines and 
decisions can be made 
on a majority principle
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Multiple Instruction, Multiple Data Stream- MIMD

 A set of processors 
simultaneously 
execute different 
instruction 
sequences on 
different data sets

 This architecture is 
the most common 
and widely used 
form of parallel 
architectures
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Multiple Instruction, Multiple Data Stream- MIMD

 General purpose 
processors

 Each processor can 
process all 
instructions 
necessary

 Further classified by 
method of 
processor 
communication
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Taxonomy of Parallel Processor Architectures
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Performance: speedup
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 A key reference point for both the architect and the 
application developer is how the use of parallelism 
improves the performance of the application

 We may define the speedup on processors as

Speedup (p processors) =

 For a fixed problem size performance = 1/time

 Speedup fixed problem (p processors) =  

performance (p processors)

performance (1 processor)

time (1 processor)

time (p processors)
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 To complete the introduction to the fundamental issues 
of parallel computer architecture, we need to understand 
performance at many levels of design

 Fundamentally, there are three performance metrics:

 Latency: time taken for an operation

 Bandwidth: rate of performing operations

 Cost: impact on execution time of program

Communication Performance
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 If processor does one thing at a time: 

 bandwidth (operation per second) is about   1/latency

 cost is simply latency x number of operations

 But actually it is more complex in modern systems

 Modern computer systems do many different operations 
at once and the relationship between these performance 
metrics is much more complex

Communication Performance
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 Characteristics apply to overall operations, as well as 
individual components of a system

 Since the unique property of parallel computer 
architecture is communication, the operations that we 
are concerned with most often are data transfers

Communication Performance
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 The time for a data transfer operation is generally 
described by a linear model:

 Transfer time (n)  = T0 + n/B
 n is the amount of data (e.g. number of bytes), 

 B is the transfer rate of the component moving the data (e.g.  bytes 
per second), 

 the constant term T0 is the start-up cost

 This is a very convenient model, and it is used to describe 
a diverse collection of operations: messages, memory 
accesses, bus transactions, and vector operations

Linear Model of Data Transfer Latency
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 It applies in many aspects of traditional computer 
architecture, as well, and we can observe:

 For memory operations, it is essentially the access time

 For bus transactions, it reflects the bus arbitration and 
command phases

 For any sort of pipelined operation, including pipelined 
instruction processing or vector operations, it is the time to 
fill pipeline

Linear Model of Data Transfer Latency



2016/2017Advanced and Parallel Architectures49

 But a linear model is not enough:

 It does not give any indication when the next such operation 
can be initiated

 It does not indicate whether other useful work can be 
performed during the transfer

 These other factors depend on how the transfer is 
performed:

 need to know how transfer is performed

Linear Model of Data Transfer Latency
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 The data transfer in which we are most interested is the 
one that occurs across the network in parallel machines

 It is initiated by the processor through the 
communication assist

 The essential components of this operation can be 
described by the following simple model:

Communication Time (n)= Overhead + Network Delay + Occupancy

Communication Cost Model
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Communication Time (n)= Overhead + Network Delay + Occupancy

 The Overhead is the time the processor spends initiating the 
transfer

 It may be a fixed cost, if the processor simply has to tell the 
communication assist to start

 It may be linear in n, if the processor has to copy the data into the assist

 This is time the processor:

 is busy with the communication event

 cannot do other useful work or initiate other communication 

Communication Cost Model
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Communication Time (n)= Overhead + Network Delay + Occupancy

 The remaining portions of the communication time is 
considered the network latency; it is the part that can be 
hidden by other processor operations

Communication Cost Model
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Communication Time (n)= Overhead + Network Delay + Occupancy

 The Occupancy is the time it takes for the data to pass through 
the slowest component on the communication path:

 The data will occupy other resources, including buffers, switches, and the 
communication assist

 Often the communication assist is the bottleneck that determines the 
occupancy

 The occupancy limits how frequently communication operations can be 
initiated

 The next data transfer will have to wait until the critical resource is no 
longer occupied before it can use that same resource

Communication Cost Model
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Communication Time (n)= Overhead + Network Delay + Occupancy

 The remaining communication time is the Network Delay, which 
includes:

 the time for a bit to be routed across the actual network

 other factors, such as the time to get through the communication assist

 From the processors viewpoint, the specific hardware components 
contributing to network delay are indistinguishable 

Communication Cost Model
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 A useful model connecting the program characteristics to 
the hardware performance is given by 

Communication Cost = frequency * (Comm time - overlap)

 The frequency of communication:

 is defined as the number of communication operations per unit 
of work in the program

 it depends on many programming factors and many hardware 
design factors

Communication Cost Model
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Communication Cost = frequency * (Comm time - overlap)

Note that:

 Hardware may:

 limit the transfer size and determine the min number of messages

 replicate data or migrate it to where it is used

 A certain amount of communication is inherent to parallel 
execution, since data must be shared and processors must 
coordinate their work 

 A machine can support programs with a high communication 
frequency if the other parts of the communication cost are 
small: low overhead, low network delay, and small occupancy

Communication Cost Model


