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Graphics Processing Units

 GPUs and CPUs do not go back in computer architecture 
genealogy to a common ancestor

 The primary ancestors of GPUs are graphics accelerators

 Given the hardware invested to do graphics well 
architects ask 

how can be the design of GPUs used to improve the 
performance of a wider range of applications?
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Graphics Processing Units

 The challenge for the GPU programmer

 is not simply getting good performance on the GPU

 but also in coordinating the scheduling of computation on the 
system processor and the GPU and the transfer of data 
between system memory and GPU memory

 GPUs have virtually every type of parallelism that can be 
captured by the programming environment:

 multithreading

 MIMD

 SIMD

 instruction-level
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Programming the GPU

 NVIDIA developed a C-like language and programming 
environment: CUDA - Compute Unified Device Architecture

 CUDA produces C/C++ for the system processor - host - and 
a C and C++ dialect for the GPU - device (D in CUDA)

 A similar programming language is OpenCL, which several 
companies are developing as vendor-independent language
for multiple platforms
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Programming the GPU

 NVIDIA unified all forms of parallelism in the CUDA Thread 
and classifies the CUDA programming model as Single 
Instruction, Multiple Thread (SIMT)

 The compiler and the hardware can gang thousands of 
CUDA Threads together to utilize the various styles of 
parallelism within a GPU (multithreading, MIMD, SIMD, ILP)

 Threads are blocked together - Thread Block - and 
executed in groups of 32 threads

 In Hennessy-Patterson the hardware that executes a whole 
block of threads is called a multithreaded SIMD Processor
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Programming the GPU

 To distinguish between functions for the GPU (device) and 
functions for the system processor (host), CUDA uses 

 __device__ or __global__ for the device

 __host__ for the processor

 CUDA variables declared as in the

 __device__ or __global__ functions 

are allocated to the GPU Memory which is accessible by all 
multithreaded SIMD processors

2016/2017Advanced and Parallel Architectures7



Programming the GPU

 The call syntax for the function name that runs on the GPU 

name<<<dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimBlock specify the dimensions of the 
code (in blocks) and the dimensions of a block (in threads)

 CUDA provides  keywords for:

 the identifier for blocks per grid - blockIdx - and 

 the identifier for threads per block - threadIdx -

 the number of threads per block - blockDim - which comes from 
the dimBlock parameter
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Example

 Consider the DAXPY example

// Invoke DAXPY

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, double a, double *x, double *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}
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Example

 In the CUDA version, we launch:

 n threads, one per vector element 

 with 256 CUDA Threads per thread block 

 in a multithreaded SIMD Processor

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
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Example

 The GPU function calculates the corresponding element index i based on 
the block ID, the number of threads per block, and the thread ID

 If this index is within the array (i < n), it performs the multiply and add

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
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Threads and Blocks

 The C version has:

 a loop where each iteration is independent of the others

 This allows the loop to be transformed straightforwardly into a 
parallel code 

 each loop iteration becomes an independent thread

 The programmer determines the parallelism in CUDA 
explicitly by specifying

 the grid dimensions and 

 the number of threads per SIMD Processor

 By assigning a single thread to each element, there is no 
need to synchronize among threads when writing results 
to memory
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Threads and Blocks

 A thread is associated with each data element
 CUDA threads, with thousands of which for various styles of parallelism 

(multithreading, SIMD, MIMD, ILP)

 Threads are organized into blocks
 Thread Blocks: groups of up to 512 elements

 Multithreaded SIMD Processor: hardware that executes a whole thread 
block (32 elements executed per thread at a time)

 Blocks are organized into a grid
 Blocks are executed independently and in any order

 Different blocks cannot communicate directly but can coordinate using 
atomic memory operations in GPU Main Memory
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Threads and Blocks

 The programmer determines the parallelism in CUDA 
explicitly by specifying the grid dimensions and the 
number of threads per SIMD Processor

 By assigning a single thread to each element, there is no 
need to synchronize among threads when writing results 
to memory

 GPU hardware handles parallel execution and thread 
management (not done by applications or OS)
 A multiprocessor composed of multithreaded SIMD processors

 A Thread Block Scheduler
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Threads and Blocks

 Performance programmers must keep the GPU hardware in 
mind when writing in CUDA

 They need:  

 To keep groups of 32 threads together in control flow to get 
the best performance from multithreaded SIMD Processors

 To create many more threads per multithreaded SIMD 
Processor to hide latency to DRAM. 

 To keep the data addresses localized in one or a few blocks 
of memory to get the expected memory performance

 Like many parallel systems, a compromise between 
productivity and performance is for CUDA to include intrinsics
to give programmers explicit control of the hardware
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NVIDIA GPU Computational Structures

 Similarities between vector architectures and GPUs:

 Work well with data-level parallel problems

 Scatter-gather transfers

 Mask registers

 Many registers (GPUs have more registers)

 Differences between vector architectures and GPUs:

 No scalar processor (GPU in hw, Vector arch in sw)

 GPUs use multithreading to hide memory latency

 GPUs have many functional units, as opposed to a few deeply 
pipelined units like a vector processor
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NVIDIA GPU Computational Structures

 Efficient code for both vector architectures and GPUs 
requires programmers to think in groups of SIMD 
operations

 A Grid is the code that runs on a GPU that consists of a 
set of Thread Blocks

 The analogy is :

 between a grid and a vectorizabled loop and 

 between a Thread Block and the body of that loop (after it has
been strip-mined, for a full computation loop - Strip mining is 
the generation of code such that each vector operation is done 
for a size less than or equal to the MVL)
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Example

 Multiply two vectors of 
length 8192

The mapping is:

 Grid vectorizable loop

 Thread Blocks  SIMD basic 
blocks

 threads of SIMD instructions 
 vector-vector multiply
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Example

 Multiply two vectors of 
length 8192

 Code that works over all 
elements is the grid

 Thread blocks break the grid  
manageable sizes

 Grid is composed of blocks 
with up to 512 elements

 SIMD instruction executes 32 
elements at a time

 The number of Threads 
Blocks is 8192/512=16
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Example

Thread Block:

 Analogous to a strip-mined vector 
loop with vector length of 32

 Is assigned to a multithreaded 
SIMD Processor by the Thread 
Block Scheduler

The Thread Block Scheduler:

 Determines the number of thread 
blocks needed for the loop and 

 Keeps allocating them to different 
multithreaded SIMD Processors 
until the loop is completed
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A multithreaded SIMD 
Processor has many 
parallel functional 
units: SIMD Lanes

SIMD Lanes are
similar to the Vector 
Lanes (but GPUs have 
many instead of a few, 
deeply pipelined, as a 
Vector Processor)

Simplified block diagram of a multithreated SIMD Processor

NVIDIA GPU Computational Structures
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NVIDIA GPU Computational Structures

A GPU is a 
multiprocessor
composed of 
multithreaded SIMD 
Processors

The GPU hardware

 contains a collection 
of multithreaded 
SIMD Processors that 
execute a Grid of 
Thread Blocks (bodies 
of vectorized loop)
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Simplified block diagram of a multithreated SIMD Processor
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NVIDIA GPU Computational Structures

Multithreaded SIMD 
Processors 

 full processors with 
separate PCs 

 programmed using 
threads

 the machine object 
that the hw creates, 
manages, schedules, 
and executes is a 
thread of SIMD 
instructions
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Simplified block diagram of a multithreated SIMD Processor
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NVIDIA GPU Computational Structures

 Threads of SIMD instructions

 Each has its own PC

 Thread scheduler uses scoreboard to dispatch

 No data dependences between threads!

 Keeps track of threads of SIMD instructions (to 
see which SIMD instruction is ready to go)

 Hides memory latency

 Thread block scheduler schedules blocks to 
SIMD processors

 Within each SIMD processor:

 SIMD lanes

 Wide and shallow compared to vector processors
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NVIDIA GPU Computational Structures

 NVIDIA GPU has registers (32,768 in Fermi)

 Divided into lanes (Like a vector processor)

 Each SIMD thread is limited to 64 registers

 SIMD thread is limited to no more than 64 registers, that can be:

 64 vector registers of 32 32-bit elements

 32 vector registers of 32 64-bit elements

 In the vector multiply example, each multithreaded SIMD Proc:

 must load 32 elements of two vectors from memory into registers

 perform the multiply by reading and writing registers

 store the product from registers into memory
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NVIDIA Instruction Set Architecture

 Instruction Set target of the NVIDIA compiler is an 
abstraction of the hardware instruction set

 Parallel Thread Execution (PTX)

 The hardware instruction set is hidden from the programmer

 PTX uses virtual registers compiler figures out how many 
physical vector registers a SIMD thread needs

 an optimizer divides the available register storage between the 
SIMD threads

 Translation to machine code is performed in software
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NVIDIA Instruction Set Architecture

The format of a PTX instruction is
opcode.type d, a, b, c;

 d is the destination operand; a, b, and c are source 
operands

 The operation type is one of the following:

Type .type Specifier

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating Point 16, 32, and 64 bits .f16, .f32, .f64
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NVIDIA Instruction Set Architecture

The groups of instructions are:

 Arithmetic

 Special Functions (mathematical)

 Logical

 Memory access

 Control Flow

 The control flow instructions are functions call and return, 
thread exit, branch, and barrier synchronization for threads 
within a thread block (bar.sync)
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Arithmetic group
arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64

add.type add.f32 d, a, b d = a + b;

sub.type sub.f32 d, a, b d = a – b;

mul.type mul.f32 d, a, b d = a * b;

mad.type mad.f32 d, a, b, c d = a * b + c; 

div.type div.f32 d, a, b d = a / b; 

rem.type rem.u32 d, a, b d = a % b; 

abs.type abs.f32 d, a d = |a|;

neg.type neg.f32 d, a d = 0 - a;

min.type min.f32 d, a, b d = (a < b)? a:b; 

max.type max.f32 d, a, b d = (a > b)? a:b; 

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); 

numeric .cmp = eq, ne, lt, le, gt, ge; 

unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

ecc.
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Special and logic groups
special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

logic.type = .pred,.b32, .b64

and.type and.b32 d, a, b d = a & b;

or.type or.b32 d, a, b d = a | b;

xor.type xor.b32 d, a, b d = a ^ b;

not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right
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Memory access and control flow groups 
Memory Access 

memory.space = .global, .shared, .local, .const

.type = .b8,, .u8, .s8, .b16, .b32, .b64

ld.space.type ld.global.b32 d, [a+off] d = *(a+off); 

st.space.type st.shared.b32 [d+off], a *(d+off) = a;

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); 

atom.spc.op.type atom.global.add.u32 d,[a], b

atom.global.cas.b32 d,[a], b, c

atom.op = and, or, xor, add, min, max, exch, cas; 

.spc = .global; .type = .b32

Control Flow

branch @p bra target if (p) goto target; 

call call (ret), func, (params) ret = func(params); 

ret ret return; 

bar.sync bar.sync d wait for threads

exit exit exit; 
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NVIDIA Instruction Set Arch.

 Sequence of PTX instructions for one iteration of DAXPY loop
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512=29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

 CUDA 

 assigns one CUDA Thread to each loop iteration 

 offers a unique identifier number to each thread block (blockIdx) 
and one to each CUDA Thread within a block (threadIdx) 

 uses the unique number to address each element in the array

 8192 CUDA threads are created!
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NVIDIA Instruction Set Arch.

 Sequence of PTX instructions for one iteration of DAXPY loop
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512=29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

 GPUs

 All data transfers are gather-scatter! 

 include special Address Coalescing hw to recognize when the SIMD 
Lanes within a thread are issuing sequential addresses 

 The GPU programmer must ensure that adjacent CUDA Threads 
access nearby addresses at the same time that can be coalesced, 
as in our example
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NVIDIA GPU Memory Structures

 Each SIMD Lane has private section of off-chip DRAM

 “Private memory”, not shared by any other lanes

 Contains stack frame, spilling registers, and private variables

 Recent GPUs cache this in L1 and L2 caches

 Each multithreaded SIMD processor also has local 
memory that is on-chip

 Shared by SIMD lanes / threads within a block only

 The off-chip memory shared by SIMD processors is GPU 
Memory

 Host can read and write GPU memory
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GPU Memory is 
shared by all Grids 
(vectorized loops) 
Local Memory is 
shared by all 
threads of SIMD 
instructions within 
a thread block 
(body of a 
vectorized loop), 
Private Memory is 
private to a single 
CUDA Thread.
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NVIDIA GPU Memory Structures

Local Memory

Shared Memory

Global Memory
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Summary

 GPUs are really just multithreaded SIMD processors, although 
they have:

 more processors, 

 more lanes per processor, and 

 more multithreading hardware than traditional multicore computers 

 The CUDA programmer can think of programming thousands 
of threads, although they are really executing each block of 32 
threads on the many lanes of the many SIMD Processors

 The CUDA programmer who wants good performance keeps in 
mind that these threads are blocked and executed 32 at a 
time and that addresses need to be to adjacent addresses to 
get good performance from the memory system
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GPUs from CUDA point of view
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Programming Massively Parallel Processors

D.B. Kirk W. W. Hwu

 Chapter 3 - Introduction to Data Parallelism and CUDA C

 Sections 3.2 - 3.6

 Chapter 4 - Data Parallel Execution Model

 Sections 4.5 - 4.7

 Chapter 5 - CUDA Memories

 Sections 5.2 - 5.4

Multicore and GPU Programming

G. Barlas

 Chapter 6 - GPU Programming

 Sections 6.2 - 6.7
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CUDA Programming Model

 The GPU is viewed as a compute device that:
 Is a coprocessor to the CPU (host)

 Has its own DRAM (device memory)

 Runs many threads in parallel

 Data-parallel portions of an application are executed on 
the device as kernels which run in parallel on many 
threads

 Differences between GPU and CPU threads 
 GPU threads are extremely lightweight

 Very little creation overhead

 GPU needs 1000s of threads for full efficiency

 Multi-core CPU needs only a few
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CPUs: Latency Oriented Design 

 Large caches

 Convert long latency memory 
accesses to short latency cache 
accesses

 Sophisticated control

 Branch prediction for reduced 
branch latency

 Data forwarding for reduced 
data latency

 Powerful ALU

 Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU
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GPUs: Throughput Oriented Design

 Small caches

 To boost memory throughput

 Simple control

 No branch prediction

 No data forwarding

 Energy efficient ALUs

 Many, long latency but heavily 
pipelined for high throughput

 Require massive number of 
threads to tolerate latencies

DRAM

GPU
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GPU Architecture  

 A typical CUDA-capable GPU can be organized into

 An array of highly threaded Streaming Multiprocessors (SMs) 

 In Figure, two SMs form a building block; but, the number of 
SMs in a building block can vary
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GPU Architecture 

 Each SM has a number of streaming processors (SPs) that 
share control logic and instruction cache

 Each GPU currently comes with a graphics double data 
rate (GDDR) DRAM, referred to as global memory
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Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data
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Cache
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Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache
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GPU Architecture 

 The parallel G80 chip has 128 SPs (16 SMs, 8 SPs)

 Each SP has a multiply–add (MAD) unit and a multiply unit

 Produces a total of over 500 gigaflops

 GT200 (240 SPs) exceeds 1 teraflops - GTX680 1,5 teraflops
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CUDA Program Structure

 The structure of a CUDA program reflects the computing 
system consisting of 

 a host, which is a traditional central processing unit (CPU) 

 one or more devices (GPUs)

 A CUDA program is a unified source code encompassing 
both host and device code

 The NVIDIA C compiler - nvcc - separates the two during 
the compilation process
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CUDA Program Structure

 The host code is:

 straight ANSI C code 

 it is further compiled with the host’s standard C compilers 
and runs as an ordinary CPU process

 The device code is:

 written using ANSI C extended with keywords for labeling 
data-parallel functions, called kernels, and their 
associated data structures

 The device code is typically further compiled by the nvcc
and executed on a GPU device
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Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

Compiling A CUDA Program
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CUDA Execution Model
 The execution starts with host (CPU) execution

 When a kernel function is launched, the execution is moved to a 
device (GPU), where a large number of threads are generated to 
take advantage of abundant data parallelism

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);
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CUDA Execution Model
 All the threads that are generated by a kernel during an 

invocation are collectively called a grid

 Figure shows the execution of two grids of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);
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CUDA Execution Model
 When all threads of a kernel complete their execution:

 the corresponding grid terminates

 the execution continues on the host until another kernel is 
invoked

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);
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Vector Addition – Traditional C Code
// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)

{

for (i = 0, i < n, i++)

C[i] = A[i] + B[i];

}

int main()

{

// Memory allocation for A_h, B_h, and C_h

// I/O to read A_h and B_h, N elements

…

vecAdd(A_h, B_h, C_h, N);

}
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void vecAdd(float* h_A, float* h_B, float* h_C, int

n)

{

int size = n* sizeof(float); 

float* d_A, d_B, d_C;

…

1. // Allocate device memory for A, B, and C

// copy A and B to device memory 

2. // Kernel launch code – to have the device

// to perform the actual vector addition

3. // copy C from the device memory

// Free device vectors

}

Part 1

CPU

Host Memory

GPU
Part 2

Device Memory

Part 3

Vector Addition – Kernel 
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Device Memory and Data Transfer

 The host and devices have separate memory spaces 

 To execute a kernel on a device

 the programmer needs to allocate memory on the device 

 transfer data from the host memory to the allocated device 
memory 

 this corresponds to Part 1 of Figure 

 After device execution

 the programmer needs to transfer result data from the device 
memory back to the host memory

 free up the device memory

 this corresponds to Part 3 of Figure
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Device Memory and Data Transfer

 The CUDA memory model is supported by API functions 
that help programmers to manage data in memories

 The function cudaMalloc():

 Called from the host code to allocate object in the device 
global memory

 Two parameters:

 address of a pointer variable to the allocated object after allocation

 size of the allocated object  in terms of bytes

 The function cudaFree():

 Frees object from device global memory

 Pointer to freed object

 The function cudaMemcpy(): for memory data transfer
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Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Device Memory Management API

 cudaMalloc()

 Allocates object in the device 
global memory

 Two parameters

 Address of a pointer to the 
allocated object

 Size of of allocated object in terms 
of bytes

 cudaFree()
 Frees object from device global 

memory

 Pointer to freed object
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Host

Host-Device Data Transfer API functions

 cudaMemcpy()

 memory data transfer

 requires four parameters

 Pointer to destination 

 Pointer to source

 Number of bytes copied

 Type/Direction of transfer

 Transfer to device is asynchronous

(Device) Grid

Global

Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

int size = n * sizeof(float); 

float* d_A, d_B, d_C;

1. // Transfer A and B to device memory 

cudaMalloc((void **) &d_A, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_B, size);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Allocate device memory for

cudaMalloc((void **) &d_C, size);

2. // Kernel invocation code – to be shown later

…

3. // Transfer C from device to host

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory for A, B, C

cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

Vector Addition – Traditional C Code
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Arrays of Parallel Threads

 A kernel function specifies the code to be executed by all 
threads during a parallel phase

 All of these threads execute the same code

 A CUDA kernel is executed by a grid (array) of threads 

 All threads in a grid run the same kernel code (SPMD)

 Each thread has an index that it uses to compute memory 
addresses and make control decisions
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i = blockIdx.x * blockDim.x + 
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];
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Thread Blocks: Scalable Cooperation

 Thread array is divided into multiple blocks

 Threads within a block cooperate via shared memory, 
atomic operations and barrier synchronization

 Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…… …
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Arrays of Parallel Threads

 When a kernel is invoked, it is executed as grid of parallel 
threads

 Each CUDA thread grid typically is comprised of 
thousands to millions of lightweight GPU threads per 
kernel invocation 

 Creating enough threads to fully utilize the hardware 
often requires a large amount of data parallelism
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Figure 3.2. An Example of CUDA Thread Organization.
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blockIdx and threadIdx

 Threads in a grid are organized into 
a two-level hierarchy

 top level, each grid consists of one or 
more thread blocks

 All blocks in a grid have the same 
number of threads organized in the 
same manner

 Each grid is organized as a as a three-
dimensional array of blocks

 Each block has a unique three 
dimensional coordinate given by the 
CUDA specific keywords blockIdx.x, 
blockIdx.y and blockIdx.z
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blockIdx and threadIdx

 Threads in a grid are organized into 
a two-level hierarchy

 Each thread block is organized as a 
three-dimensional array of threads 
with a total size of up to 512 threads 

 The coordinates of threads in a block 
are uniquely defined by three thread 
indices: threadIdx.x, threadIdx.y, 
and threadIdx.z

 Not all applications will use all three 
dimensions of a thread block
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blockIdx and threadIdx

 Threads in a grid are organized into 
a two-level hierarchy

 In Figure 

 each thread block is organized into a 
4x2x2 three-dimensional array of 
threads

 this gives Grid 1 a total of 4x16 = 64 
threads

 Each thread uses indices to decide 
what data to work on
 blockIdx: 1D, 2D, or 3D (CUDA 4.0)

 threadIdx: 1D, 2D, or 3D 
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CUDA Thread Organization

 When a thread executes the kernel function, references to 
the blockIdx and threadIdx variables return the 
coordinates of the thread

 Additional built-in variables, gridDim and blockDim, provide 
the dimension of the grid and the dimension of each block

 threadID = blockIdx.x * blockDim.x + threadIdx

identifies the part of the input data to read from and the 
part of the output data structure to write to 

 Example Thread 3 of Block 0 has a threadID value of 0*M + 3 = 3

 Example Thread 3 of Block 5 has a threadID value of 5*M + 3
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CUDA threads, blocks and grids
 Nvidia use the Compute Capability specification to encode what

each generation of GPU chips is capable of

 The Compute Capability (CC) of a GPU can be discovered by
running the deviceQuery utility
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CUDA Thread Organization

 The exact organization of a grid is determined by the 
execution configuration provided at kernel launch

 The first parameter specifies the dimensions of the grid as # blocks

 The second specifies the dimensions of each block as # threads

 Each such parameter is a dim3 type, a C struct with three unsigned 
integer fields: x, y, and z

 Example
dim3 dimGrid(128, 1, 1);

dim3 dimBlock(32, 1, 1);

vecAddKernel<<<dimGrid, dimBlock>>>(. . .);

or
dim3 cat(128, 1, 1);

dim3 dog(32, 1, 1);

KernelFunction<<<cat, dog>>>(. . .); 
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Execution Configuration Examples

Examples Assuming we have

dim3 b(3,3,3);

dim3 g(20,100);

Different grid-block combinations are possible:

 foo<<<g,b>>>();   // Run a 20x100 grid made of 3x3x3 blocks

 foo<<<10,b>>>(); // Run a 10-block grid, each block made by 3x3x3 
threads

 foo<<<g,256>>>();  // Run a 20x100 grid, made of 256 threads

 foo<<<g,2048>>>(); // An invalid example: maximum block size is 1024 
threads even for compute capability 5.x

 foo<<<5,g>>>();    // Another invalid example, that specifies a block size
of 20x100=2000 threads

 foo<<<10,256>>>;   // simplified configuration for a 1D grid of 1D blocks
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Synchronization 

 CUDA allows threads in the same block to coordinate 
their activities using a barrier synchronization function, 
__syncthreads()

 the thread that executes the function call will be held at the 
calling location until every thread in the block reaches the 
location

 A __syncthreads() statement must be executed by all 
threads in a block of the kernel before any moves on to 
the next phase
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Thread and Block Assignment

 Once a kernel is launched, the CUDA runtime system 
generates the corresponding grid of threads 

 threads are assigned to execution resources on a block-by-
block basis

 The execution resources are organized into streaming 
multiprocessors (SMs)

 Each device has a limit on the 

number of block that can be 

assigned to each SM
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Thread and Block Assignment

 When an insufficient amount of any one or more types of 
resources needed for the simultaneous execution of 
blocks, the CUDA runtime automatically reduces the 
number of blocks assigned to each SM 

 The runtime system maintains a list of blocks that need to 
execute and assigns new blocks to SMs as they complete 
the execution of blocks previously assigned to them
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Thread Scheduling

 Once a block is assigned to a streaming multiprocessor, it 
is further divided into 32-thread units called warps

 The warp is the unit of thread scheduling in SMs

 Each warp consists of 32 threads of consecutive threadIdx
values: 

 Threads 0 through 31 form the first warp

 Threads 32 through 63 the second warp, and so on

 We can calculate the number of warps that reside in an 
SM for a given block size and a given number of blocks 
assigned to each SM
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Thread Scheduling

 Each Block is executed as 
32-thread Warps
– Warps are scheduling units in SM

 Example If 3 blocks are 
assigned to an SM and each 
block has 256 threads, how 
many warps are there in an 
SM?
 3 blocks, each block 256 threads 

 each block has 256/32 = 8 warps

 having 3 blocks in each SM, we 
have 8 x 3 = 24 warps in each SM
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Thread Scheduling

 Why do we need to have so many warps in an SM if there are 
only 8 SPs in an SM? 

 The answer is for efficiently executing long-latency operations such 
as global memory accesses

 When an instruction executed by the threads in a warp needs to wait 
for the result of a previously initiated long-latency operation, the 
warp is not selected for execution

 Another resident warp (that is no waiting for results) is selected for 
execution

 If more than one warp is ready for execution, a priority mechanism is 
used to select one for execution 

 This mechanism of filling the latency of expensive operations with 
work from other threads is often referred to as latency hiding
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Thread Scheduling

 Note that warp scheduling is also used for tolerating other 
types of long latency operations such as pipelined floating-
point arithmetic and branch instructions

 With enough warps around

 The hardware will likely find a warp to execute at any point in time

 Full use of the execution hardware in spite of long-latency operations

 The selection of ready warps for execution

 Does not introduce any idle time into the execution timeline

 zero-overhead thread scheduling

 With warp scheduling, the long waiting time of warp 
instructions is hidden by executing instructions from other 
warps
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SM Warp Scheduling
 SM hardware implements zero-overhead 

Warp scheduling
 Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution

 Eligible Warps are selected for execution 
on a prioritized scheduling policy

 All threads in a Warp execute the same 
instruction when selected

 4 clock cycles needed to dispatch the 
same instruction for all threads in a Warp 
in G80
 If one global memory access is needed for 

every 4 instructions
 A minimum of 13 Warps are needed to 

fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
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Thread Scheduling

 List of GPU chips and their SM capabilty
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Programmer View of  CUDA Memories

 At the bottom of the figure, 
we see global memory and 
constant memory

 These types of memory can 
be written (W) and read (R) 
by the host by calling API 
functions

 The constant memory supports 
short-latency, high-bandwidth, 
read-only access by the device 
when all threads simultaneously 
access the same location
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Programmer View of  CUDA Memories
Device code can:
 R/W per-thread registers

 R/W per-thread local memory

 R/W per-block shared memory

 R/W per-grid global memory

 Read-only per-grid constant 
memory

Host code can:

 Transfer data to/from per-grid
global and constant memories
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Programmer View of  CUDA Memories

 Registers and shared memory 
are on-chip memories

 Variables on these memories 
can be accessed at very high 
speed in a highly parallel 
manner

 Registers are allocated to 
individual threads and each 
thread can only access its own 
registers

 A kernel function uses registers 
to hold frequently accessed 
variables private to each thread
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Programmer View of  CUDA Memories

 Registers and shared 
memory are on-chip 
memories

 Shared memory is allocated to 
thread blocks; 

 all threads in a block can 
access variables in the shared 
memory locations allocated to 
the block

 Shared memory is used by 
threads to cooperate by sharing 
their input data and the 
intermediate results
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Variables

 Table presents the CUDA syntax for declaring program 
variables into the various types of device memory

 Each declaration gives to CUDA variable: 

 A scope identifies the range of threads that can access the 
variable: single thread only, all threads of a block, or all threads 
of all grids

 A lifetime specifies the portion of the program’s execution 
duration when the variable is available for use: either within a 
kernel’s invocation or throughout the entire application
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Variable declaration Memory Scope Lifetime

Automatic Variables register thread kernel

__device__ __shared__   int SharedVar; shared block kernel

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application


