
Advanced Parallel Architecture

Annalisa Massini - 2016/2017

GPU - Graphics Processing Units

Computer Architecture - A Quantitative Approach, Fifth Edition

Hennessy Patterson

Chapter 4 - Section 4.4 – Graphics Processing Units

2016/2017Advanced and Parallel Architectures2

Graphics Processing Units

 GPUs and CPUs do not go back in computer architecture
genealogy to a common ancestor

 The primary ancestors of GPUs are graphics accelerators

 Given the hardware invested to do graphics well
architects ask

how can be the design of GPUs used to improve the
performance of a wider range of applications?

2016/2017Advanced and Parallel Architectures3

Graphics Processing Units

 The challenge for the GPU programmer

 is not simply getting good performance on the GPU

 but also in coordinating the scheduling of computation on the
system processor and the GPU and the transfer of data
between system memory and GPU memory

 GPUs have virtually every type of parallelism that can be
captured by the programming environment:

 multithreading

 MIMD

 SIMD

 instruction-level

2016/2017Advanced and Parallel Architectures4

Programming the GPU

 NVIDIA developed a C-like language and programming
environment: CUDA - Compute Unified Device Architecture

 CUDA produces C/C++ for the system processor - host - and
a C and C++ dialect for the GPU - device (D in CUDA)

 A similar programming language is OpenCL, which several
companies are developing as vendor-independent language
for multiple platforms

2016/2017Advanced and Parallel Architectures5

Programming the GPU

 NVIDIA unified all forms of parallelism in the CUDA Thread
and classifies the CUDA programming model as Single
Instruction, Multiple Thread (SIMT)

 The compiler and the hardware can gang thousands of
CUDA Threads together to utilize the various styles of
parallelism within a GPU (multithreading, MIMD, SIMD, ILP)

 Threads are blocked together - Thread Block - and
executed in groups of 32 threads

 In Hennessy-Patterson the hardware that executes a whole
block of threads is called a multithreaded SIMD Processor

2016/2017Advanced and Parallel Architectures6

Programming the GPU

 To distinguish between functions for the GPU (device) and
functions for the system processor (host), CUDA uses

 __device__ or __global__ for the device

 __host__ for the processor

 CUDA variables declared as in the

 __device__ or __global__ functions

are allocated to the GPU Memory which is accessible by all
multithreaded SIMD processors

2016/2017Advanced and Parallel Architectures7

Programming the GPU

 The call syntax for the function name that runs on the GPU

name<<<dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimBlock specify the dimensions of the
code (in blocks) and the dimensions of a block (in threads)

 CUDA provides keywords for:

 the identifier for blocks per grid - blockIdx - and

 the identifier for threads per block - threadIdx -

 the number of threads per block - blockDim - which comes from
the dimBlock parameter

2016/2017Advanced and Parallel Architectures8

Example

 Consider the DAXPY example

// Invoke DAXPY

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, double a, double *x, double *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

2016/2017Advanced and Parallel Architectures9

Example

 In the CUDA version, we launch:

 n threads, one per vector element

 with 256 CUDA Threads per thread block

 in a multithreaded SIMD Processor

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
2016/2017Advanced and Parallel Architectures10

Example

 The GPU function calculates the corresponding element index i based on
the block ID, the number of threads per block, and the thread ID

 If this index is within the array (i < n), it performs the multiply and add

// Invoke DAXPY with 256 threads per Thread Block

__host__

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA

__device__

void daxpy(int n, double a, double *x, double *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
2016/2017Advanced and Parallel Architectures11

Threads and Blocks

 The C version has:

 a loop where each iteration is independent of the others

 This allows the loop to be transformed straightforwardly into a
parallel code

 each loop iteration becomes an independent thread

 The programmer determines the parallelism in CUDA
explicitly by specifying

 the grid dimensions and

 the number of threads per SIMD Processor

 By assigning a single thread to each element, there is no
need to synchronize among threads when writing results
to memory

2016/2017Advanced and Parallel Architectures12

Threads and Blocks

 A thread is associated with each data element
 CUDA threads, with thousands of which for various styles of parallelism

(multithreading, SIMD, MIMD, ILP)

 Threads are organized into blocks
 Thread Blocks: groups of up to 512 elements

 Multithreaded SIMD Processor: hardware that executes a whole thread
block (32 elements executed per thread at a time)

 Blocks are organized into a grid
 Blocks are executed independently and in any order

 Different blocks cannot communicate directly but can coordinate using
atomic memory operations in GPU Main Memory

2016/2017Advanced and Parallel Architectures13

Threads and Blocks

 The programmer determines the parallelism in CUDA
explicitly by specifying the grid dimensions and the
number of threads per SIMD Processor

 By assigning a single thread to each element, there is no
need to synchronize among threads when writing results
to memory

 GPU hardware handles parallel execution and thread
management (not done by applications or OS)
 A multiprocessor composed of multithreaded SIMD processors

 A Thread Block Scheduler

2016/2017Advanced and Parallel Architectures14

Threads and Blocks

 Performance programmers must keep the GPU hardware in
mind when writing in CUDA

 They need:

 To keep groups of 32 threads together in control flow to get
the best performance from multithreaded SIMD Processors

 To create many more threads per multithreaded SIMD
Processor to hide latency to DRAM.

 To keep the data addresses localized in one or a few blocks
of memory to get the expected memory performance

 Like many parallel systems, a compromise between
productivity and performance is for CUDA to include intrinsics
to give programmers explicit control of the hardware

2016/2017Advanced and Parallel Architectures15

NVIDIA GPU Computational Structures

 Similarities between vector architectures and GPUs:

 Work well with data-level parallel problems

 Scatter-gather transfers

 Mask registers

 Many registers (GPUs have more registers)

 Differences between vector architectures and GPUs:

 No scalar processor (GPU in hw, Vector arch in sw)

 GPUs use multithreading to hide memory latency

 GPUs have many functional units, as opposed to a few deeply
pipelined units like a vector processor

2016/2017Advanced and Parallel Architectures16

NVIDIA GPU Computational Structures

 Efficient code for both vector architectures and GPUs
requires programmers to think in groups of SIMD
operations

 A Grid is the code that runs on a GPU that consists of a
set of Thread Blocks

 The analogy is :

 between a grid and a vectorizabled loop and

 between a Thread Block and the body of that loop (after it has
been strip-mined, for a full computation loop - Strip mining is
the generation of code such that each vector operation is done
for a size less than or equal to the MVL)

2016/2017Advanced and Parallel Architectures17

Example

 Multiply two vectors of
length 8192

The mapping is:

 Grid vectorizable loop

 Thread Blocks  SIMD basic
blocks

 threads of SIMD instructions
 vector-vector multiply

2016/2017Advanced and Parallel Architectures18

Example

 Multiply two vectors of
length 8192

 Code that works over all
elements is the grid

 Thread blocks break the grid
manageable sizes

 Grid is composed of blocks
with up to 512 elements

 SIMD instruction executes 32
elements at a time

 The number of Threads
Blocks is 8192/512=16

2016/2017Advanced and Parallel Architectures19

Example

Thread Block:

 Analogous to a strip-mined vector
loop with vector length of 32

 Is assigned to a multithreaded
SIMD Processor by the Thread
Block Scheduler

The Thread Block Scheduler:

 Determines the number of thread
blocks needed for the loop and

 Keeps allocating them to different
multithreaded SIMD Processors
until the loop is completed

2016/2017Advanced and Parallel Architectures20

2016/2017Advanced and Parallel Architectures

A multithreaded SIMD
Processor has many
parallel functional
units: SIMD Lanes

SIMD Lanes are
similar to the Vector
Lanes (but GPUs have
many instead of a few,
deeply pipelined, as a
Vector Processor)

Simplified block diagram of a multithreated SIMD Processor

NVIDIA GPU Computational Structures

21

NVIDIA GPU Computational Structures

A GPU is a
multiprocessor
composed of
multithreaded SIMD
Processors

The GPU hardware

 contains a collection
of multithreaded
SIMD Processors that
execute a Grid of
Thread Blocks (bodies
of vectorized loop)

2016/2017Advanced and Parallel Architectures

Simplified block diagram of a multithreated SIMD Processor

22

NVIDIA GPU Computational Structures

Multithreaded SIMD
Processors

 full processors with
separate PCs

 programmed using
threads

 the machine object
that the hw creates,
manages, schedules,
and executes is a
thread of SIMD
instructions

2016/2017Advanced and Parallel Architectures

Simplified block diagram of a multithreated SIMD Processor

23

NVIDIA GPU Computational Structures

 Threads of SIMD instructions

 Each has its own PC

 Thread scheduler uses scoreboard to dispatch

 No data dependences between threads!

 Keeps track of threads of SIMD instructions (to
see which SIMD instruction is ready to go)

 Hides memory latency

 Thread block scheduler schedules blocks to
SIMD processors

 Within each SIMD processor:

 SIMD lanes

 Wide and shallow compared to vector processors

2016/2017Advanced and Parallel Architectures24

NVIDIA GPU Computational Structures

 NVIDIA GPU has registers (32,768 in Fermi)

 Divided into lanes (Like a vector processor)

 Each SIMD thread is limited to 64 registers

 SIMD thread is limited to no more than 64 registers, that can be:

 64 vector registers of 32 32-bit elements

 32 vector registers of 32 64-bit elements

 In the vector multiply example, each multithreaded SIMD Proc:

 must load 32 elements of two vectors from memory into registers

 perform the multiply by reading and writing registers

 store the product from registers into memory

2016/2017Advanced and Parallel Architectures25

NVIDIA Instruction Set Architecture

 Instruction Set target of the NVIDIA compiler is an
abstraction of the hardware instruction set

 Parallel Thread Execution (PTX)

 The hardware instruction set is hidden from the programmer

 PTX uses virtual registers compiler figures out how many
physical vector registers a SIMD thread needs

 an optimizer divides the available register storage between the
SIMD threads

 Translation to machine code is performed in software

2016/2017Advanced and Parallel Architectures26

NVIDIA Instruction Set Architecture

The format of a PTX instruction is
opcode.type d, a, b, c;

 d is the destination operand; a, b, and c are source
operands

 The operation type is one of the following:

Type .type Specifier

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64

Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64

Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64

Floating Point 16, 32, and 64 bits .f16, .f32, .f64

2016/2017Advanced and Parallel Architectures27

NVIDIA Instruction Set Architecture

The groups of instructions are:

 Arithmetic

 Special Functions (mathematical)

 Logical

 Memory access

 Control Flow

 The control flow instructions are functions call and return,
thread exit, branch, and barrier synchronization for threads
within a thread block (bar.sync)

2016/2017Advanced and Parallel Architectures28

Arithmetic group
arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64

add.type add.f32 d, a, b d = a + b;

sub.type sub.f32 d, a, b d = a – b;

mul.type mul.f32 d, a, b d = a * b;

mad.type mad.f32 d, a, b, c d = a * b + c;

div.type div.f32 d, a, b d = a / b;

rem.type rem.u32 d, a, b d = a % b;

abs.type abs.f32 d, a d = |a|;

neg.type neg.f32 d, a d = 0 - a;

min.type min.f32 d, a, b d = (a < b)? a:b;

max.type max.f32 d, a, b d = (a > b)? a:b;

setp.cmp.type setp.lt.f32 p, a, b p = (a < b);

numeric .cmp = eq, ne, lt, le, gt, ge;

unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

ecc.

2016/2017Advanced and Parallel Architectures29

Special and logic groups
special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

logic.type = .pred,.b32, .b64

and.type and.b32 d, a, b d = a & b;

or.type or.b32 d, a, b d = a | b;

xor.type xor.b32 d, a, b d = a ^ b;

not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

2016/2017Advanced and Parallel Architectures30

Memory access and control flow groups
Memory Access

memory.space = .global, .shared, .local, .const

.type = .b8,, .u8, .s8, .b16, .b32, .b64

ld.space.type ld.global.b32 d, [a+off] d = *(a+off);

st.space.type st.shared.b32 [d+off], a *(d+off) = a;

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b);

atom.spc.op.type atom.global.add.u32 d,[a], b

atom.global.cas.b32 d,[a], b, c

atom.op = and, or, xor, add, min, max, exch, cas;

.spc = .global; .type = .b32

Control Flow

branch @p bra target if (p) goto target;

call call (ret), func, (params) ret = func(params);

ret ret return;

bar.sync bar.sync d wait for threads

exit exit exit;

2016/2017Advanced and Parallel Architectures31

NVIDIA Instruction Set Arch.

 Sequence of PTX instructions for one iteration of DAXPY loop
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512=29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

 CUDA

 assigns one CUDA Thread to each loop iteration

 offers a unique identifier number to each thread block (blockIdx)
and one to each CUDA Thread within a block (threadIdx)

 uses the unique number to address each element in the array

 8192 CUDA threads are created!

2016/2017Advanced and Parallel Architectures32

NVIDIA Instruction Set Arch.

 Sequence of PTX instructions for one iteration of DAXPY loop
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512=29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

 GPUs

 All data transfers are gather-scatter!

 include special Address Coalescing hw to recognize when the SIMD
Lanes within a thread are issuing sequential addresses

 The GPU programmer must ensure that adjacent CUDA Threads
access nearby addresses at the same time that can be coalesced,
as in our example

2016/2017Advanced and Parallel Architectures33

NVIDIA GPU Memory Structures

 Each SIMD Lane has private section of off-chip DRAM

 “Private memory”, not shared by any other lanes

 Contains stack frame, spilling registers, and private variables

 Recent GPUs cache this in L1 and L2 caches

 Each multithreaded SIMD processor also has local
memory that is on-chip

 Shared by SIMD lanes / threads within a block only

 The off-chip memory shared by SIMD processors is GPU
Memory

 Host can read and write GPU memory

2016/2017Advanced and Parallel Architectures34

GPU Memory is
shared by all Grids
(vectorized loops)
Local Memory is
shared by all
threads of SIMD
instructions within
a thread block
(body of a
vectorized loop),
Private Memory is
private to a single
CUDA Thread.

2016/2017Advanced and Parallel Architectures

NVIDIA GPU Memory Structures

Local Memory

Shared Memory

Global Memory

35

Summary

 GPUs are really just multithreaded SIMD processors, although
they have:

 more processors,

 more lanes per processor, and

 more multithreading hardware than traditional multicore computers

 The CUDA programmer can think of programming thousands
of threads, although they are really executing each block of 32
threads on the many lanes of the many SIMD Processors

 The CUDA programmer who wants good performance keeps in
mind that these threads are blocked and executed 32 at a
time and that addresses need to be to adjacent addresses to
get good performance from the memory system

2016/2017Advanced and Parallel Architectures36

GPUs from CUDA point of view

2016/2017Advanced and Parallel Architectures37

Programming Massively Parallel Processors

D.B. Kirk W. W. Hwu

 Chapter 3 - Introduction to Data Parallelism and CUDA C

 Sections 3.2 - 3.6

 Chapter 4 - Data Parallel Execution Model

 Sections 4.5 - 4.7

 Chapter 5 - CUDA Memories

 Sections 5.2 - 5.4

Multicore and GPU Programming

G. Barlas

 Chapter 6 - GPU Programming

 Sections 6.2 - 6.7

Advanced and Parallel Architectures38 2016/2017

CUDA Programming Model

 The GPU is viewed as a compute device that:
 Is a coprocessor to the CPU (host)

 Has its own DRAM (device memory)

 Runs many threads in parallel

 Data-parallel portions of an application are executed on
the device as kernels which run in parallel on many
threads

 Differences between GPU and CPU threads
 GPU threads are extremely lightweight

 Very little creation overhead

 GPU needs 1000s of threads for full efficiency

 Multi-core CPU needs only a few

Advanced and Parallel Architectures39 2016/2017

CPUs: Latency Oriented Design

 Large caches

 Convert long latency memory
accesses to short latency cache
accesses

 Sophisticated control

 Branch prediction for reduced
branch latency

 Data forwarding for reduced
data latency

 Powerful ALU

 Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

Advanced and Parallel Architectures40 2016/2017

GPUs: Throughput Oriented Design

 Small caches

 To boost memory throughput

 Simple control

 No branch prediction

 No data forwarding

 Energy efficient ALUs

 Many, long latency but heavily
pipelined for high throughput

 Require massive number of
threads to tolerate latencies

DRAM

GPU

Advanced and Parallel Architectures41 2016/2017

GPU Architecture

 A typical CUDA-capable GPU can be organized into

 An array of highly threaded Streaming Multiprocessors (SMs)

 In Figure, two SMs form a building block; but, the number of
SMs in a building block can vary

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Advanced and Parallel Architectures42 2016/2017

GPU Architecture

 Each SM has a number of streaming processors (SPs) that
share control logic and instruction cache

 Each GPU currently comes with a graphics double data
rate (GDDR) DRAM, referred to as global memory

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Advanced and Parallel Architectures43 2016/2017

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

GPU Architecture

 The parallel G80 chip has 128 SPs (16 SMs, 8 SPs)

 Each SP has a multiply–add (MAD) unit and a multiply unit

 Produces a total of over 500 gigaflops

 GT200 (240 SPs) exceeds 1 teraflops - GTX680 1,5 teraflops

Advanced and Parallel Architectures44 2016/2017

CUDA Program Structure

 The structure of a CUDA program reflects the computing
system consisting of

 a host, which is a traditional central processing unit (CPU)

 one or more devices (GPUs)

 A CUDA program is a unified source code encompassing
both host and device code

 The NVIDIA C compiler - nvcc - separates the two during
the compilation process

Advanced and Parallel Architectures45 2016/2017

CUDA Program Structure

 The host code is:

 straight ANSI C code

 it is further compiled with the host’s standard C compilers
and runs as an ordinary CPU process

 The device code is:

 written using ANSI C extended with keywords for labeling
data-parallel functions, called kernels, and their
associated data structures

 The device code is typically further compiled by the nvcc
and executed on a GPU device

Advanced and Parallel Architectures46 2016/2017

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

Compiling A CUDA Program

Advanced and Parallel Architectures47 2016/2017

CUDA Execution Model
 The execution starts with host (CPU) execution

 When a kernel function is launched, the execution is moved to a
device (GPU), where a large number of threads are generated to
take advantage of abundant data parallelism

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

Advanced and Parallel Architectures48 2016/2017

CUDA Execution Model
 All the threads that are generated by a kernel during an

invocation are collectively called a grid

 Figure shows the execution of two grids of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

Advanced and Parallel Architectures49 2016/2017

CUDA Execution Model
 When all threads of a kernel complete their execution:

 the corresponding grid terminates

 the execution continues on the host until another kernel is
invoked

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

Advanced and Parallel Architectures50 2016/2017

Vector Addition – Traditional C Code
// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)

{

for (i = 0, i < n, i++)

C[i] = A[i] + B[i];

}

int main()

{

// Memory allocation for A_h, B_h, and C_h

// I/O to read A_h and B_h, N elements

…

vecAdd(A_h, B_h, C_h, N);

}
Advanced and Parallel Architectures51 2016/2017

void vecAdd(float* h_A, float* h_B, float* h_C, int

n)

{

int size = n* sizeof(float);

float* d_A, d_B, d_C;

…

1. // Allocate device memory for A, B, and C

// copy A and B to device memory

2. // Kernel launch code – to have the device

// to perform the actual vector addition

3. // copy C from the device memory

// Free device vectors

}

Part 1

CPU

Host Memory

GPU
Part 2

Device Memory

Part 3

Vector Addition – Kernel

Advanced and Parallel Architectures52

Device Memory and Data Transfer

 The host and devices have separate memory spaces

 To execute a kernel on a device

 the programmer needs to allocate memory on the device

 transfer data from the host memory to the allocated device
memory

 this corresponds to Part 1 of Figure

 After device execution

 the programmer needs to transfer result data from the device
memory back to the host memory

 free up the device memory

 this corresponds to Part 3 of Figure

Advanced and Parallel Architectures53

Part 1

CPU

Host Memory

GPU
Part 2

Device Memory

Part 3

Device Memory and Data Transfer

 The CUDA memory model is supported by API functions
that help programmers to manage data in memories

 The function cudaMalloc():

 Called from the host code to allocate object in the device
global memory

 Two parameters:

 address of a pointer variable to the allocated object after allocation

 size of the allocated object in terms of bytes

 The function cudaFree():

 Frees object from device global memory

 Pointer to freed object

 The function cudaMemcpy(): for memory data transfer

Advanced and Parallel Architectures54 2016/2017

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Device Memory Management API

 cudaMalloc()

 Allocates object in the device
global memory

 Two parameters

 Address of a pointer to the
allocated object

 Size of of allocated object in terms
of bytes

 cudaFree()
 Frees object from device global

memory

 Pointer to freed object

Advanced and Parallel Architectures55 2016/2017

Host

Host-Device Data Transfer API functions

 cudaMemcpy()

 memory data transfer

 requires four parameters

 Pointer to destination

 Pointer to source

 Number of bytes copied

 Type/Direction of transfer

 Transfer to device is asynchronous

(Device) Grid

Global

Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Advanced and Parallel Architectures56 2016/2017

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

int size = n * sizeof(float);

float* d_A, d_B, d_C;

1. // Transfer A and B to device memory

cudaMalloc((void **) &d_A, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &d_B, size);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Allocate device memory for

cudaMalloc((void **) &d_C, size);

2. // Kernel invocation code – to be shown later

…

3. // Transfer C from device to host

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory for A, B, C

cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

Vector Addition – Traditional C Code

Advanced and Parallel Architectures57 2016/2017

Arrays of Parallel Threads

 A kernel function specifies the code to be executed by all
threads during a parallel phase

 All of these threads execute the same code

 A CUDA kernel is executed by a grid (array) of threads

 All threads in a grid run the same kernel code (SPMD)

 Each thread has an index that it uses to compute memory
addresses and make control decisions

Advanced and Parallel Architectures

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

…

58 2016/2017

Thread Blocks: Scalable Cooperation

 Thread array is divided into multiple blocks

 Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

 Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…… …

Advanced and Parallel Architectures59 2016/2017

Arrays of Parallel Threads

 When a kernel is invoked, it is executed as grid of parallel
threads

 Each CUDA thread grid typically is comprised of
thousands to millions of lightweight GPU threads per
kernel invocation

 Creating enough threads to fully utilize the hardware
often requires a large amount of data parallelism

Advanced and Parallel Architectures60 2016/2017

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

 Threads in a grid are organized into
a two-level hierarchy

 top level, each grid consists of one or
more thread blocks

 All blocks in a grid have the same
number of threads organized in the
same manner

 Each grid is organized as a as a three-
dimensional array of blocks

 Each block has a unique three
dimensional coordinate given by the
CUDA specific keywords blockIdx.x,
blockIdx.y and blockIdx.z

Advanced and Parallel Architectures61 2016/2017

blockIdx and threadIdx

 Threads in a grid are organized into
a two-level hierarchy

 Each thread block is organized as a
three-dimensional array of threads
with a total size of up to 512 threads

 The coordinates of threads in a block
are uniquely defined by three thread
indices: threadIdx.x, threadIdx.y,
and threadIdx.z

 Not all applications will use all three
dimensions of a thread block

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced and Parallel Architectures62 2016/2017

blockIdx and threadIdx

 Threads in a grid are organized into
a two-level hierarchy

 In Figure

 each thread block is organized into a
4x2x2 three-dimensional array of
threads

 this gives Grid 1 a total of 4x16 = 64
threads

 Each thread uses indices to decide
what data to work on
 blockIdx: 1D, 2D, or 3D (CUDA 4.0)

 threadIdx: 1D, 2D, or 3D

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced and Parallel Architectures63 2016/2017

CUDA Thread Organization

 When a thread executes the kernel function, references to
the blockIdx and threadIdx variables return the
coordinates of the thread

 Additional built-in variables, gridDim and blockDim, provide
the dimension of the grid and the dimension of each block

 threadID = blockIdx.x * blockDim.x + threadIdx

identifies the part of the input data to read from and the
part of the output data structure to write to

 Example Thread 3 of Block 0 has a threadID value of 0*M + 3 = 3

 Example Thread 3 of Block 5 has a threadID value of 5*M + 3

Advanced and Parallel Architectures64 2016/2017

CUDA threads, blocks and grids
 Nvidia use the Compute Capability specification to encode what

each generation of GPU chips is capable of

 The Compute Capability (CC) of a GPU can be discovered by
running the deviceQuery utility

Advanced and Parallel Architectures65 2016/2017

CUDA Thread Organization

 The exact organization of a grid is determined by the
execution configuration provided at kernel launch

 The first parameter specifies the dimensions of the grid as # blocks

 The second specifies the dimensions of each block as # threads

 Each such parameter is a dim3 type, a C struct with three unsigned
integer fields: x, y, and z

 Example
dim3 dimGrid(128, 1, 1);

dim3 dimBlock(32, 1, 1);

vecAddKernel<<<dimGrid, dimBlock>>>(. . .);

or
dim3 cat(128, 1, 1);

dim3 dog(32, 1, 1);

KernelFunction<<<cat, dog>>>(. . .);

Advanced and Parallel Architectures66 2016/2017

Execution Configuration Examples

Examples Assuming we have

dim3 b(3,3,3);

dim3 g(20,100);

Different grid-block combinations are possible:

 foo<<<g,b>>>(); // Run a 20x100 grid made of 3x3x3 blocks

 foo<<<10,b>>>(); // Run a 10-block grid, each block made by 3x3x3
threads

 foo<<<g,256>>>(); // Run a 20x100 grid, made of 256 threads

 foo<<<g,2048>>>(); // An invalid example: maximum block size is 1024
threads even for compute capability 5.x

 foo<<<5,g>>>(); // Another invalid example, that specifies a block size
of 20x100=2000 threads

 foo<<<10,256>>>; // simplified configuration for a 1D grid of 1D blocks

Advanced and Parallel Architectures67 2016/2017

Synchronization

 CUDA allows threads in the same block to coordinate
their activities using a barrier synchronization function,
__syncthreads()

 the thread that executes the function call will be held at the
calling location until every thread in the block reaches the
location

 A __syncthreads() statement must be executed by all
threads in a block of the kernel before any moves on to
the next phase

Advanced and Parallel Architectures68 2016/2017

Thread and Block Assignment

 Once a kernel is launched, the CUDA runtime system
generates the corresponding grid of threads

 threads are assigned to execution resources on a block-by-
block basis

 The execution resources are organized into streaming
multiprocessors (SMs)

 Each device has a limit on the

number of block that can be

assigned to each SM

Advanced and Parallel Architectures69 2016/2017

t0 t1 t2 …
tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 …
tm

Blocks

SM 1SM 0

Thread and Block Assignment

 When an insufficient amount of any one or more types of
resources needed for the simultaneous execution of
blocks, the CUDA runtime automatically reduces the
number of blocks assigned to each SM

 The runtime system maintains a list of blocks that need to
execute and assigns new blocks to SMs as they complete
the execution of blocks previously assigned to them

Advanced and Parallel Architectures

t0 t1 t2 …
tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 …
tm

Blocks

SM 1SM 0

70 2016/2017

Thread Scheduling

 Once a block is assigned to a streaming multiprocessor, it
is further divided into 32-thread units called warps

 The warp is the unit of thread scheduling in SMs

 Each warp consists of 32 threads of consecutive threadIdx
values:

 Threads 0 through 31 form the first warp

 Threads 32 through 63 the second warp, and so on

 We can calculate the number of warps that reside in an
SM for a given block size and a given number of blocks
assigned to each SM

Advanced and Parallel Architectures71 2016/2017

Thread Scheduling

 Each Block is executed as
32-thread Warps
– Warps are scheduling units in SM

 Example If 3 blocks are
assigned to an SM and each
block has 256 threads, how
many warps are there in an
SM?
 3 blocks, each block 256 threads

 each block has 256/32 = 8 warps

 having 3 blocks in each SM, we
have 8 x 3 = 24 warps in each SM

Advanced and Parallel Architectures

…
t0 t1 t2 …

t31

…

…
t0 t1 t2 …

t31

…

Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 …

t31

…

Block 3 Warps

72 2016/2017

Thread Scheduling

 Why do we need to have so many warps in an SM if there are
only 8 SPs in an SM?

 The answer is for efficiently executing long-latency operations such
as global memory accesses

 When an instruction executed by the threads in a warp needs to wait
for the result of a previously initiated long-latency operation, the
warp is not selected for execution

 Another resident warp (that is no waiting for results) is selected for
execution

 If more than one warp is ready for execution, a priority mechanism is
used to select one for execution

 This mechanism of filling the latency of expensive operations with
work from other threads is often referred to as latency hiding

Advanced and Parallel Architectures73 2016/2017

Thread Scheduling

 Note that warp scheduling is also used for tolerating other
types of long latency operations such as pipelined floating-
point arithmetic and branch instructions

 With enough warps around

 The hardware will likely find a warp to execute at any point in time

 Full use of the execution hardware in spite of long-latency operations

 The selection of ready warps for execution

 Does not introduce any idle time into the execution timeline

 zero-overhead thread scheduling

 With warp scheduling, the long waiting time of warp
instructions is hidden by executing instructions from other
warps

Advanced and Parallel Architectures74 2016/2017

SM Warp Scheduling
 SM hardware implements zero-overhead

Warp scheduling
 Warps whose next instruction has its

operands ready for consumption are
eligible for execution

 Eligible Warps are selected for execution
on a prioritized scheduling policy

 All threads in a Warp execute the same
instruction when selected

 4 clock cycles needed to dispatch the
same instruction for all threads in a Warp
in G80
 If one global memory access is needed for

every 4 instructions
 A minimum of 13 Warps are needed to

fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

Advanced and Parallel Architectures77 2016/2017

Thread Scheduling

 List of GPU chips and their SM capabilty

Advanced and Parallel Architectures76 2016/2017

Programmer View of CUDA Memories

 At the bottom of the figure,
we see global memory and
constant memory

 These types of memory can
be written (W) and read (R)
by the host by calling API
functions

 The constant memory supports
short-latency, high-bandwidth,
read-only access by the device
when all threads simultaneously
access the same location

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures77 2016/2017

Programmer View of CUDA Memories
Device code can:
 R/W per-thread registers

 R/W per-thread local memory

 R/W per-block shared memory

 R/W per-grid global memory

 Read-only per-grid constant
memory

Host code can:

 Transfer data to/from per-grid
global and constant memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures78 2016/2017

Programmer View of CUDA Memories

 Registers and shared memory
are on-chip memories

 Variables on these memories
can be accessed at very high
speed in a highly parallel
manner

 Registers are allocated to
individual threads and each
thread can only access its own
registers

 A kernel function uses registers
to hold frequently accessed
variables private to each thread

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures79 2016/2017

Programmer View of CUDA Memories

 Registers and shared
memory are on-chip
memories

 Shared memory is allocated to
thread blocks;

 all threads in a block can
access variables in the shared
memory locations allocated to
the block

 Shared memory is used by
threads to cooperate by sharing
their input data and the
intermediate results

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures80 2016/2017

Variables

 Table presents the CUDA syntax for declaring program
variables into the various types of device memory

 Each declaration gives to CUDA variable:

 A scope identifies the range of threads that can access the
variable: single thread only, all threads of a block, or all threads
of all grids

 A lifetime specifies the portion of the program’s execution
duration when the variable is available for use: either within a
kernel’s invocation or throughout the entire application

Advanced and Parallel Architectures81 2016/2017

Variable declaration Memory Scope Lifetime

Automatic Variables register thread kernel

__device__ __shared__ int SharedVar; shared block kernel

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

