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Abstract

In this paper we study the topological equivalence problem of multistage interconnection networks (MINs). We prove a new

characterization of topologically equivalent MINs by means of a novel approach. Applying this characterization to log N stage

MINs we completely describe the equivalence class which the Reverse Baseline belongs to. Most important, we apply the

characterization to ð2 logN � 1Þ stage MINs obtained as concatenation of two log N stage Reverse Baseline equivalent MINs: in

this way, we deduce an OðN logNÞ time algorithm testing the equivalence of two such MINs. This result substantially improves the

time complexity of the previously known algorithms (OðN4 log NÞ). Finally, we determine the number of different equivalence

classes of ð2 log N � 1Þ stage MINs and we characterize each of them.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Experience with the design and use of parallel
computers indicates that the efficiency of a parallel
computer (among other things) is largely dependent on
the properties of the interconnection network, i.e. the
device devoted to the information exchange between
processors and memories. Namely, the interconnection
network not only affects the hardware architecture but
also the nature of the system software (such as the
network operating system). Several topologies have been
proposed to realize interconnection networks; in parti-
cular, multistage interconnection networks (MINs) have
been widely studied by researchers (for a survey, see
[8,19]) and implemented in some practical systems for
the efficient communication schemes they provide.
Usually MINs with N inputs and N outputs, N ¼ 2n;
and stages with N

2
switching elements of size 2� 2 are

considered.
MINs consisting of log N stages such as Omega [17],

Flip [2], Indirect Binary Cube [21], Modified Data
Manipulator [11], Baseline and Reverse Baseline [22],
Butterfly and Reverse Butterfly [19] networks, have the
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same underlying graph and present attractive advan-
tages: efficient routing algorithms, partitionability, small
number of switching elements. Unfortunately, these
networks are blocking.
For this reason, ð2 log N � 1Þ stage MINs have been

intensively studied. They are obtained by concatenating
two log N stage MINs with the center stage overlapped;
Beneš network [3] is an example of this class of MINs
and it is usually represented as the concatenation of a
Baseline and a Reverse Baseline.
In the past two decades the binary relation of

topological equivalence between two different MINs
has been widely investigated because, although many
MINs appear completely different (in the sense that
their usual graphical representations are not the same
and it is not trivial to find a 1-1 function identifying the
networks as N grows), they are intrinsically the same,
i.e. the underlying graph is the same; hence, the
understanding of this equivalence relation makes it
possible to apply the routing scheme designed for a
MIN to an equivalent one and to develop more general
routing algorithms useful for all MINs in the same
equivalence class, independently from their aspect.
It is well known that the general problem of deciding

whether two graphs are isomorphic is easily in NP, but it
is not known to be in P and it is not known to be NP-
complete [13,15]. Nevertheless, the question restricted to
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particular graphs is easier. Namely, let us look at MINs:
for what concerns log N stage MINs, Wu and Feng [22]
present the first formal definition of topological
equivalence and prove that the six most common
log N stage MINs (those mentioned above) are topolo-
gically equivalent: they exhibit isomorphisms between
all pairs of networks, but do not give any characteriza-
tion of the equivalence class. Another approach is
considered by Agrawal [1], but unfortunately it is
correct only for log N stage MINs of small dimension.
A revised version is proposed by Bermond et al. [4]: they
give more general properties to check the topological
equivalence. Hu et al. [14] present a simplified checking
equivalence algorithm based on a marking scheme of
nodes whose time complexity is OðN log NÞ; that is
optimal.
A lot of efforts have been expended also in studying

topological equivalence of ð2 log N � 1Þ stage MINs.
Wu and Feng [23] extend their equivalence properties
for log N stage MINs to prove that two-passes of a
Reverse Baseline network has the same routing cap-
ability and is equivalent to the Beneš network. Lee [18]
proves that an Omega network concatenated with its
reverse is equivalent to the Beneš network. Yeh and
Feng [24] propose a coding scheme to check whether a
given ð2 log N � 1Þ stage MIN is topologically equiva-
lent to the Beneš network, but this scheme leaves many
cases uncovered. Feng et al. [12] study 36 common
topologies obtained as concatenation of two log N stage
MINs and classify them into two equivalence classes.
Hu et al. [14] investigate whether a ð2 log N � 1Þ stage
MIN is the concatenation of two log N stage MINs and
give an algorithm to determine whether two given
ð2 log N � 1Þ stage MINs are topologically equivalent in
OðN4 log NÞ time.
In almost all the cited papers, the studied MINs are

considered as strictly dependent from their more usual
graphical representation. In this work we approach the
topological equivalence problem from a novel point of
view: by means of the layered cross product [10], we do
not deal with the appearance of the considered MINs
but we consider the underlying graph to extract the
structural properties useful for the equivalence. This
different approach allows us to propose a new
characterization for the topological equivalence of
MINs that is independent from the particular appear-
ance of each MIN. This very general characteriza-
tion achieves interesting results when applied to
ð2 log N � 1Þ stage MINs.
Namely, we deal with MINs obtained as concatena-

tion of two Reverse Baseline equivalent MINs; first,
we provide an optimal algorithm (i.e. running in
OðN log NÞ time) testing the equivalence of two
such MINs. This algorithm improves of a factor
OðN3Þ the time complexity of the previously
known one [14]. Then, we determine the number of
different equivalence classes and we characterize each of
them. These results definitely close the topological
equivalence problem on this kind of ð2 log N � 1Þ stage
MINs.
The rest of this paper is organized as follows. In

Section 2 we give some preliminary definitions. Section 3
is devoted to the new characterization of topological
equivalence of MINs. In Section 4 we specialize this
characterization to log N stage MINs and we provide an
OðN log NÞ time algorithm, checking the equivalence of
a MIN with the Reverse Baseline. Although this result
does not improve the time complexity of the previously
known one [14], its interest lies in the originality of the
approach, and we detail it since it is preliminary to the
algorithm concerning ð2 log N � 1Þ stage MINs. In
Section 5 we give an OðN log NÞ time algorithm to
check the topological equivalence of two MINs obtained
as concatenation of two Baseline equivalent MINs and
we characterize the equivalence classes. Finally, Section
6 is devoted to some final considerations and open
problems.
2. Preliminary definitions

In this section we give some basic definitions and
preliminary results, useful for the comprehension of the
rest of this paper.

Definition 2.1. An l-layered graph, G ¼ ðV1;V2;y;
Vl ;EÞ consists of l layers of nodes; Vi is the (non-
empty) set of nodes in layer i; where 1pipl; E is a
set of edges: every edge connects nodes of two adjacent
layers.

Observe that a rooted tree T of height h is a particular
case of h-layered graph, where layer i is defined either as
the set of nodes having distance i � 1 from the root or as
the set of nodes having distance h � i from the root.
From now on, we shall call a complete binary tree T by
means of D or r according to whether the first or the
second way of defining layers is chosen (the notation
comes from the usual graphic representation of such
trees—see Fig. 1a and b).
The N � N multistage interconnection network (N-

MIN) is another particular l-layered graph, where layers
coincide with stages, jVij ¼ N

2
and any node in Vi;

representing a switching element of size 2� 2; is
adjacent to exactly two nodes in Vi�1 and
Viþ1; 2pipl � 1; and the edge set is partitioned into
l � 1 subsets, called edge-stages, E1;E2;y;El�1 such
that Ei contains N edges, that is all edges between Vi�1
and Vi: Each node of the first stage is also connected to
a pair of inputs and each node of the last stage is also
connected to a pair of outputs. Then an N-MIN contains
N inputs and N outputs.
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Fig. 1. A D and a r; both of height h ¼ 4:
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Fig. 2. The LCP of two graphs.
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Definition 2.2 (Even and Litman [10]). Let G0 ¼
ðV 0

1;V 0
2;y;V 0

l ;E0Þ and G00 ¼ ðV 00
1 ;V 00

2 ;y;V 00
l ;E00Þ be

two l-layered graphs. Their layered cross product (LCP
for short), G0#G00 is a l-layered graph G ¼
ðV1;V2;y;Vl ;EÞ where a node is a pair, since Vi is
the cartesian product of V 0

i and V 00
i ; 1pipl; and an edge

/ðu0; u00Þ; ðv0; v00ÞS belongs to E if and only if
/u0; v0SAE0 and /u00; v00SAE 00: G0 and G00 are called
the first and the second factor of G; respectively. An
example is depicted in Fig. 2.

We will call decomposition in factors the inverse
operation of the LCP.
Even and Litman [10] introduce the LCP technique to

show that it enables the representation of several well-
known MINs as a layered cross product of simple
networks. They also show that this decomposed repre-
sentation considerably simplifies some proofs of proper-
ties of such MINs and may be useful in the analysis and
in the synthesis of the decomposed MINs. Successively,
LCP has been used to investigate on some problems such
as grid embedding [9] and interval routing [5,16]. In this
paper we extend the use of LCP to investigate on the
topological equivalence problem of MINs.

Fact 1. Simple path is the neutral element of LCP

operation.

Lemma 2. Given two l-layered graphs, having c1 and c2
connected components, respectively, their LCP has c1 � c2
connected components.

Proof. It immediately follows from the definition of
LCP. &
Given any two layers i and j; ioj; we say that a l-
layered graph G has a simple cycle from i to j if the
shortest cycle passing through any node at layer i and
any node at layer j is 2ðj � iÞ long; in other words, G has
a simple cycle from i to j if there exists a cycle passing
through all layers from i to j and does not pass through
layers i � 1 and j þ 1; furthermore, it does not exist a
layer j0ði0Þ; ioj0ojðioi0ojÞ such that G has a simple
cycle from i to j0 (from i0 to j).

Lemma 3. Given two l-layered graphs G1 and G2; if

G1 ðG2Þ has a simple cycle from i to j for some i and

j; ioj; and G2 ðG1Þ has a simple cycle from i to j0Xj; then

also the LCP of G1 and G2 has a simple cycle from i to j.

Proof. It is easy to see that if G1 (G2) has a simple cycle
from i to j and G2(G1) has a longer cycle in
correspondence of the same interval of layers, then also
G1#G2 has a cycle passing through all layers from i to j

and 2ðj � iÞ long. From the definition of LCP it follows
that it cannot exist in G1#G2 a shortest cycle from i to a
layer j00oj: &

Lemma 4 (Even and Litman [10]). The LCP of a D and

a r; both of them with N
2

leaves, outputs an N input

Butterfly network.

Paz [20] provides a theory of decomposition into
prime factors (i.e. not further decomposable graphs) of
MINs, based on matrix notation. We now recall the
following three graphs (see Fig. 3) belonging to the set of
prime graphs described in [20]:

* the l-layered graph Li; 1pipl � 1; has a simple path
from layer 1 to layer i (null if i ¼ 1), a fork between
layers i and i þ 1 and two parallel simple paths from
layer i þ 1 to layer l (null if i ¼ l � 1);

* the l-layered graph Vi; 1pipl � 1; has two parallel
simple paths from layer 1 to layer i (null if i ¼ 1), a
junction between layers i and i þ 1 and a simple path
from layer i þ 1 to layer l (null if i ¼ l � 1);

* the l-layered graph Fij ; 1piojpl � 1; has a simple
path from layer 1 to layer i (null if i ¼ 1), a fork
between layers i and i þ 1; two parallel simple paths
from layer i þ 1 to layer j (null if j ¼ i þ 1), a junction
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between layers j and j þ 1 and a simple path from
layer j þ 1 to layer l (null if j ¼ l � 1).

Prime graphs Li and Vi can be used to decompose in
factors binary trees; namely, a D of height h can be
decomposed as L1#L2#?Lh�1 and a r of height h

can be decomposed as V1#V2#?Vh�1:
Now, consider graph Xi;j; 1pipl � 1; lpjp2l � 2;

defined as the (2l � 1)-layered graph having a pair of
parallel simple paths from layer 1 to layer 2l � 1; and
two pairs of edges crossing between layers i and i þ 1
and between layers j and j þ 1 (see Fig. 4).
1

i

i+1

j

j+1

l

Λ                                               ΦVi i i,j

Fig. 3. Three prime graphs.

1

i

i+1

j

j+1

l

Vi Φi,j
Λ jX i,j

Fig. 4. Xi;j as LCP of Vi;Lj and Fij :
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(2,2) (2,3) (3,2) (3,3)
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1 3 52 4

4 5

1 3 52 4

2

1

Fig. 5. A baseline network obtained as LCP o
It is straightforward to see that Xi;j ¼ Vi#Lj#Fij

(see Fig. 4).
The aim of this paper is to exploit the concept of LCP

to study the topological equivalence problem of MINs.
Hence, we recall here the definition.

Definition 2.3. Any two s stage N-MINs G0 and
G00 are topologically equivalent (or simply equivalent)
if and only if there is an isomorphic mapping c
such that:

* for any stage i ði ¼ 1;y; sÞ if vAViðG0Þ then
cðvÞAViðG00Þ;

* for any edge-stage j ðj ¼ 1;y; s � 1Þ if
/u; vSAEjðG0Þ then /cðuÞ;cðvÞSAEjðG00Þ:

Observation 1. The concept of topological equivalence is

different from functional equivalence. In fact two N-

MINs are functionally equivalent if they have the

capability of always performing the same set of assign-

ments [7]. Hence, all rearrangeable N-MINs are func-

tionally equivalent though not necessarily topologically

equivalent; on the contrary, not rearrangeable N-MINs

could be topologically equivalent but not functionally

equivalent.

Observation 2. Two N-MINs topologically equivalent are

isomorphic.

The LCP is commutative, therefore from now on,
when we speak about topological equivalence between
the first and the second factors of two N-MINs G0 ¼
G0
1#G0

2 and G00 ¼ G00
1#G00

2 we mean that G0
1 and G0

2 are
equivalent either to G00

1 and G00
2 ; or to G00

2 and G00
1 ;

respectively.
In the rest of the paper we point out our attention on

N-MINs that are decomposable as LCP of two graphs;
therefore, when we speak about LCP, we implicitly
assume that the result is an N-MIN. Observe that the
inputs and outputs of N-MINs are not involved in the
LCP, but it is not restrictive to add them at the end of
the computation of the LCP (see Fig. 5).
We conclude these preliminaries by recalling some

definitions that will be useful in Section 3.
76 8

6 7

76 8

3

1 3 5 72 4 6 8

1 3 5 72 4 6 8

4 5 6 7

2 3

1

f a D and a r; with inputs and outputs.
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Definition 2.4. An N-MIN has the Banyan property if
and only if for any input and any output there exists a
unique path connecting them, passing through each
stage once.

Lemma 5 (Even and Litman [10]). The LCP operation

yields a Banyan graph if and only if each of its factors is

Banyan.
3. A new characterization for the equivalence of N-MINs

based on LCP

In this section we propose a new general character-
ization of N-MINs’ topological equivalence. Then, we
will exploit this result to design efficient algorithms for
studying the topological equivalence of N-MINs.
Although the following characterization theorem can

be stated for general layered graphs, we restrict it to N-
MINs.

Theorem 6. Let G0 and G00 be two s stage N-MINs, and

let G0 decomposable as G0
1#G0

2: Then G00 is topologically

equivalent to G0 if and only if G00 can be decomposed as

G0
1#G0

2:

Proof. (() If G00 can be decomposed as G0
1#G0

2; then
G0 and G00 are equivalent in view of the definition of
LCP (see Definition 2.2).
()) If G0 and G00 are topologically equivalent, then

they are isomorphic (see Observation 2) and hence they
can be decomposed into the same factors. &

Corollary 7. Given two N-MINs G0 ¼ G0
1#G0

2 and G00 ¼
G00
1#G00

2 ; they are topologically equivalent if their factors

are topologically equivalent.

Since, in general, the decomposition in factors
is not unique, we have to conveniently decompose the
N-MINs to check their equivalence by checking the
equivalence of their factors. This decomposition
operation is helpful since the factors of an N-MIN G

are simpler graphs than G itself, and therefore
checking the equivalence between factors may be
much easier than checking the equivalence between
N-MINs.
The next two sections illustrate how this very

general characterization can be applied to log N and
ð2 log N � 1Þ stage MINs.
4. On the equivalence of logN Stage N-MINs

In this section we deal with log N stage N-MINs,
therefore—where no confusion arises—whenever we
speak about N-MINs we mean log N stage N-MINs.
Bermond et al. [4] give an interesting characterization
of N-MINs topologically equivalent to the Reverse
Baseline network. It is based on the Banyan property
(cf. Definition 2.4) and on the Pð�; �Þ property, that we
briefly remind here.

Property Pði; jÞ. An N-MIN has property Pði; jÞ for
1pipjplog N if the subgraph Gi;j induced by the nodes
of the stage from i to j has exactly 2log N�1�jþi connected
components.

Property Pð�; �Þ. An N-MIN has property Pð�; �Þ if and
only if it satisfies Pði; jÞ for every ordered pair i; j such
that 1pipjplog N:

Theorem 8 (Bermond et al. [4]). All the N-MINs

satisfying the Banyan Property and Pð�; �Þ are topologi-

cally equivalent to the Reverse Baseline.

Checking the topological equivalence of an N-MIN to
the Reverse Baseline using the characterization of
Bermond, Fourneau and Jean-Marie requires
OðN2 log NÞ time, since the Banyan and Pð�; �Þ proper-
ties can be checked in OðN2 log NÞ and OðN log2 NÞ
time, respectively. This time complexity has been
improved by Hu et al. [14], who presented a simplified
checking equivalence algorithm based on a marking
scheme of nodes requiring OðN log NÞ time, that is
optimal, since it is the same order of magnitude as the
number of nodes in the N-MIN.
In this section, first we provide an alternative

characterization for the equivalence class which the
Reverse Baseline belongs to, then we describe an
algorithm exploiting the characterization, checking the
equivalence in OðN log NÞ time. Although the time
complexity is not better than the previously known one,
we detail this result for several reasons: first, it uses a
different technique (i.e. LCP), second, it is much easier
than the marking scheme in [14], finally it is preliminary
to the algorithm described in the next section, where
ð2 log N � 1Þ stage N-MINs are considered.

Lemma 9. An N-MIN G satisfies the Banyan and Pð�; �Þ
properties if and only if it can be decomposed as D#r:

Proof. (() If G can be decomposed as D#r then G

satisfies the Banyan property, in view of Lemma 5. G

satisfies also Pð�; �Þ; indeed, for any i; j such that
1pipjplog N; the subgraph of D induced by the nodes
of the layers from i to j has exactly 2i�1 connected
components and the subgraph of r induced by the
nodes of the layers from i to j has exactly 2log N�j

connected components. From Lemma 2, the subgraph
of G induced by the nodes of the stages from i to j has
exactly 2log N�jþi�1 connected components, i.e. G satis-
fies Pði; jÞ for any i; j and therefore G satisfies Pð�; �Þ:



ARTICLE IN PRESS
T. Calamoneri, A. Massini / J. Parallel Distrib. Comput. 64 (2004) 135–150140
()) If G satisfies the Banyan and Pð�; �Þ properties,
then—in view of Theorem 8—G is topologically
equivalent to the Reverse Baseline. It is well known
that the Reverse Baseline is topologically equivalent to
the Butterfly network [19], which can be decomposed as
LCP of D#r; as stated in Lemma 4. Theorem 6 ensures
that also the Reverse Baseline can be decomposed as
LCP of D#r and, consequently G is the LCP of the
same factors. &

Theorem 10. An N-MIN G is decomposable as D#r if

and only if G is topologically equivalent to the Reverse

Baseline.

Proof. ()) From the if part of Lemma 9 and Theorem
8, the statement follows.
(() As the Reverse Baseline satisfies the Banyan and

the Pð�; �Þ properties, from the only if part of Lemma 9,
the Reverse Baseline can be decomposed as D#r; and
from the if part of Theorem 6, the statement
follows. &

Remark 1. As a consequence of this theorem and of the
known equivalence of Butterfly, Omega, Flip, Reverse
Baseline, etc. we deduce that these networks can all be
(  ,8)1 (  ,12)1 (  ,10)1 (  ,14)1 (  ,9)1 (  ,13)1 (  ,11)1 (  ,15)1

(  ,4)2 (  ,4)3 (  ,6)2 (  ,6)3 (  ,5)2 (  ,5)3 (  ,7)2 (  ,7)3

(  ,2)4 (  ,2)5 (  ,2)6 (  ,2)7 (  ,3)4 (  ,3)5 (  ,3)6 (  ,3)7

(  ,1)8 (  ,1)9 (    ,1)10 (   ,1)11 (    ,1)12 (    ,1)13 (    ,1)14 (    ,1)15

1

2                                             3

4 5 6 7

8 9 10 11 12 13 14 15

(1,15)(1,8) (1,12) (1,10) (1,14) (1,9) (1,13) (1,11)

(2,4) (2,6) (2,5) (2,7) (3,4) (3,6) (3,5) (3,7)

(4,2) (4,3) (5,2) (5,3) (6,2) (6,3) (7,2) (7,3)

(8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14,1) (15,1)

(a)

(c)

(e)

Fig. 6. (a) a D; (b) a r; (c) an Omega network; (d) a Flip network; (e) a Butte
are the LCP of D and r; as highlighted by the labels, and are all topologica
decomposed as D#r; as shown in Fig. 6. Furthermore,
since (i) the LCP is commutative, (ii) the reverse
operator is distributive, and (iii) the reverse of a D is a
r (and vice versa), it follows that each N-MIN
decomposable as D#r is equivalent to its reverse.

In the following we describe the algorithm for the
decomposition of a log N stage MIN G as D#r; the
algorithm assigns a label to nodes of G: the label of node
v is a pair ðv0; v00Þ; where v0 and v00 represent the factors of
v according to its decomposition.
The algorithm consists of two phases: the first one

assigns the first elements of the labels, corresponding to
labels of factor D; the second phase assigns the second
elements of the labels corresponding to labels of factor
r: If the algorithm succeeds in completing the labeling,
then it provides the decomposition as D#r; if, during
the execution, two different labels are assigned to the
same node, then the algorithm returns an error message
and the N-MIN cannot be decomposed as D#r; i.e. it
is not topologically equivalent to the Reverse Baseline.
Let d1; d2;y; dN�1 and n1; n2;y; nN�1 be the names

of the nodes in D andr; respectively. As usual, let nodes
d2i (n2i) and d2iþ1 (n2iþ1) be the children of di (ni)—see
Figs. 6a and b.
15

1

2                                           3

4 5 6 7

8 9 10 11 12 13 14

(1,8)   (1,9) (1,10) (1,11) (1,12) (1,13) (1,14) (1,15)

(2,4) (2,5) (2,6) (2,7) (3,4) (3,5) (3,6) (3,7)

(4,2) (4,3) (6,2) (6,3) (5,2) (5,3) (7,2) (7,3)

(8,1) (12,1) (10,1) (14,1) (9,1) (13,1) (11,1) (15,1)

(1,8) (1,9) (1,10) (1,11) (1,12) (1,14) (1,15)(1,13)

(2,4) (3,4) (2,5) (3,5) (2,6) (3,6) (2,7) (3,7)

(4,2) (5,2) (6,2) (7,2) (4,3) (5,3) (6,3) (7,3)

(8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14,1) (15,1)

(b)

(d)

(f)

rfly network; (f) a Reverse Baseline Network. All networks from (c)–(f)

lly equivalent.
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Algorithm D#r-Decomposition
Input: a log N Stage N-MIN G;
Output: a labeling of nodes of G representing the

decomposition as D#r; if it exists; an error message
otherwise.
a. Assignment of the first element of the labels
1.
d3

d5
d7

Fig.

durin
Consider any node v at the first stage of G and
assign d1 to it, corresponding to the root of D:
2.
 Recursively consider a node already labeled with di

and assign labels d2i and d2iþ1 to its (not labeled)
adjacent nodes at next stage, until the last stage of
the N-MIN is reached. If there exists a node
receiving a label more than once, exit and return
an error message—see Fig. 7a.
3.
 For each stage s from log N to 2 do
Repeat

�

7. Ex

g Ste
Consider each node v at stage s labeled di; and
assign the same label dIi=2m to its adjacent
nodes at stage s � 1:
�
 Exit and return an error message if at least one
of them is labeled:
either differently by dIi=2m
or with dIi=2m and the sibling of v is not

labeled diþ1 (di�1) if i is even (odd)—see Fig. 7b.
Until all nodes at stage s are labeled or the
algorithm returns an error.

b. Assignment of the second element of the labels

Assign the second elements of the labels, correspond-
ing to labels of factor r; proceeding exactly as in
d1

d3d2

d5 d6 d4 d7

d1

d3d2

d5 d6 d
v

u
d2

(a) (b)

Fig. 8. An example showing how algori

d1

d2

d4
d6

d1

d2d3

d4d6 d5d7

u w

(a)                                                        (b)

amples showing how algorithm D#r-Decomposition fails

p a.2 and a.3, respectively. White nodes are still unlabeled.
phase a, but reversing the order of stages;
namely, start from the last stage at Step 1, go
up to the first one running Step 2, and down again
by means of Step 3. The role of di is now done
by ni:

Consider the assignment of the first element of the
labels (for the second element similar consider-
ations hold): Steps a.1 and a.2 of algorithm D#r-
Decomposition assign the labels to a set of nodes
inducing a complete binary tree and, in particular,
label all nodes at the last stage of G: If this is not
true, then G cannot be decomposable as D#r;
since it neither contains a complete binary tree rooted
at the first considered node (see Fig. 7a). Step a.3
starts from the last stage and goes up labeling all
other unlabeled nodes. If the labeling is computed
without inconsistencies, a decomposition in factors
is provided, otherwise the algorithm exits returning
an error message. Note that a correct labeling
requires that, during Step a.3, either node v labeled di

labels unlabeled nodes, or it visits nodes already
labeled dIi=2m; in both cases it checks if v’
sibling is labeled diþ1 when i even and di�1 when i odd
(see Fig. 7b).

Example. Fig. 8 shows how algorithm D#r-Decom-
position works on a MIN decomposable as D#r:
Namely, in Fig. 8a the first element of the labels
of a complete binary tree, obtained running
Steps a.1 and a.2, are shown. Fig. 8b highlights a single
iteration of Step a.3: let v be labeled d5; it assigns label
dI5=2m ¼ d2 to unlabeled node w and finds node u

already labeled with the same label; v’ sibling is correctly
labeled d4: Finally, Fig. 8c illustrates the output of the
algorithm.

The following theorem proves the correctness of
algorithm D#r-Decomposition and computes its time
complexity.

Theorem 11. The topological equivalence between a given

N-MIN G and the Reverse Baseline network is checkable

in OðN log NÞ time.
4 d7

w

(d1,n6) (d1,n7) (d1,n5) (d1,n4)

(d2,n3) (d3,n3) (d2,n2) (d3,n2)

(d5,n1) (d6,n1) (d4,n1) (d7,n1)

(c)

thm D#r-Decomposition works.
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Proof. In view of Theorem 10, it is enough to prove the
correctness of algorithm D#r-Decomposition, and to
compute its time complexity.

Correctness. To multiply D and r by means of LCP is
equivalent to multiply D and a set of N

2
simple paths

going from each leaf to the root, whose union is r: In
view of Fact 1, in G we have to individuate N

2
different

complete binary trees, each one having a different root
at the first stage and all sharing the leaves at the last
stage. All these trees, images of factor D; must be
connected each other analogously to their second
factors, that are two log N long simple paths. Phase a
of the algorithm looks for all N

2
images of D in G: It is

not difficult to see that the conditions leading to return
an error in algorithm D#r-Decomposition are neces-
sary and sufficient for the existence of such trees. Similar
considerations hold for Phase b.

Time complexity. The algorithm processes each node a
constant number of times, and therefore the running
time is linear in the number of nodes of G; i.e.
OðN log NÞ: Furthermore, the conditions to return an
error are easily checkable in constant time by comparing
some labels. &
1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

16 17

18 19 20 21

22 23 24 25 26 27 28 29

(17,19)
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(13,6) (13,5) (13,7)
(14,4) (14,6) (14,5)

(14,7)

(15,15)

(

(1

(1

(18

(a)

(c)

Fig. 9. (a) a ; (b) a ; (c) the concatenation of a reverse Butterfly and a Bu

(c) and (d) are equivalent.
5. On the equivalence of ð2 logN � 1Þ stage networks
A ð2 log N � 1Þ stage N-MIN is classically obtained
as concatenation of two N-MINs with log N stages
each, by merging the last stage of the first one with the
first stage of the second one. It is typical to concatenate
all the combinations of pairs of networks among
Butterfly, Omega, Flip, Baseline, their reverses, etc. to
obtain a new N-MIN. In the following we call N-MIN2

a network G with ð2 log N � 1Þ stages obtained con-
catenating two log N stage N-MINs, both equivalent to
the Reverse Baseline.
In this section we deal with the equivalence problem

for N-MIN2s: Hu et al. [14] provide an algorithm to
check the equivalence of two N-MIN2s in OðN4 log NÞ
time. We improve this result by solving the same
problem in OðN log NÞ time, that is optimal.
In view of the considerations done in the previous

section, both the log N stage N-MINs constituting a
given N-MIN2 can be decomposed as LCP of D#r: As
a consequence, we obtain that the factors of G are the
concatenation of a D and ar (roots merging) and of ar
and a D (leaves merging), respectively. It is obvious how
15
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16 17 18 19
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(b)

(d)

tterfly; (d) the concatenation of a Flip and an Omega. The networks in
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Fig. 10. (a) a ; (b) a ; (c) the concatenation of two reverse Butterflies; (d) the concatenation of two Omega networks. The networks in (c) and (d)

are equivalent.
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to merge the last layer of a r with the first layer of a D;
but there are many ways of merging the last layer of a D
and the first layer of a r: In fact, from non equivalent
MIN2s different ways of connecting the leaves of the
two trees derive, as highlighted in Figs. 9 and 10.
In the following, we indicate by the concatenation

of a r and a D; we indicate by any concatenation of a
D and a r; among all the possible s we distinguish the
ordered concatenation (Fig. 9b) by calling it obvious :

Remark 2. All N-MIN2s; obtained as concatenation of
any log N stage N-MIN topologically equivalent to the
Reverse Baseline and its reverse, are topologically
equivalent and their factor is an obvious :

Intuitively, the previous statement follows from the
fact that the N-MIN2 obtained by the concatenation of
a network and its reverse is symmetric with respect to
the line passing through the conjunction stage, then the
concatenation is obtained by identifying nodes with the
same labels (see Fig. 9). This allows one to characterize
the equivalence class of all N-MIN2s obtained by any
Reverse Baseline equivalent N-MIN and its reverse: it
contains exactly all N-MIN2s decomposed as the LCP
of a and an obvious :
Now we describe a new efficient algorithm that, given

in input two N-MIN2s; verifies whether they are
topologically equivalent or not.
The algorithm is divided into two parts: the first one

consists in decomposing each N-MIN2 into a and a ;
the second one decomposes factors into prime factors
and then compare them pairwise: if they are topologi-
cally equivalent, then the N-MIN2s are, too in view of
Theorem 6.
For clarity of explanation, we will deal with the two

parts separately.

5.1. Decomposing G as #

Consider an N-MIN2 G: For the previous reasonings,
G is always decomposable as # : The aim of the
following algorithm is two-fold: first, it discloses this
decomposition by labeling each node v of G with a pair
ðv0; v00Þ; where v0 and v00 represent the factors of v

according to its decomposition; second, it completely
defines the second factor ; i.e. the way of connecting
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nodes at stage log N and at stage log N þ 1 of : The
algorithm is divided into three different phases.
The first one decomposes the first log N stages of the

N-MIN2 using algorithm D#r-Decomposition.
The second phase decomposes the last log N � 1

stages. To this end, observe that—since G has the Pð�; �Þ
property—the last log N � 1 stages of G induce two
connected components, whose factors are a subgraph r0

of and a pair D0
1 and D0

2; subgraphs of : This second
phase labels one of the two connected components by
means of algorithm D#r-Decomposition, starting
from an arbitrary node. In order to guarantee the
consistency in the labeling, it is not possible to start
from an arbitrary node to label the second connected
component: each unlabeled node at stage log N þ 1 of G

receives the same second element of the label (deriving
from r0) as its labeled sibling (with respect to their
father at stage log N) in the first connected component.
Once nodes at stage log N þ 1 have been labeled, we can
run algorithm D#r-Decomposition, in order to label
the second component.
At the end of these two phases all nodes of G have

been labeled, and hence decomposed as LCP. Also all
edges, but the edges between stages log N and log N þ 1;
are decomposed as LCP. The third phase adds the edges
between layers log N and log N þ 1 of : In fact, the
decomposition of stages log N and log N þ 1 of G is
completely specified by means of labels. Exploiting the
edge-stage of G in between and the labels assigned
during the previous phases, the corresponding edge-
stage in is built. Namely, an edge in is added
between nodes u and v if an edge in the N-MIN exists
between nodes having as second element of their label u

and v; respectively. It is always possible to perform this
third phase, in view of the definition of G as concatena-
tion of two log N Reverse Baseline equivalent MINs.
The pseudo-code of the just described algorithm

follows.
Algorithm # -Decomposition
Input: a ð2 log N � 1Þ Stage N-MIN2 G;
Output: a specific ; and a labeling of nodes of G

representing the decomposition G ¼ # :
a.
 Decomposition of the first logN stages of the N-
MIN2

Run algorithm D#r-Decomposition on the first
log N stages of the N-MIN2 and produce a label for
each node of these stages.
b.
 Decomposition of the last logN � 1 stages
1.
 Label one of the two connected components by
running algorithm D#r-Decomposition,
starting from an arbitrary node.
2.
 Consider the second element of the label. Label
each unlabeled node at stage log N þ 1 of G

with the same label as its labeled sibling (with
respect to their father at stage log N).
3.
 Run algorithm D#r-Decomposition on the
last log N � 1 stages of the N-MIN2; taking
into account the labels assigned at stage
log N þ 1:
c.
 Decomposition of the set of edges between stages

logN and logN þ 1

For each edge e ¼ ðu; vÞ connecting node u—
labeled ðu0; u00Þ—at stage log N and node v—labeled
ðv0; v00Þ—at stage log N þ 1 of G do
add edge ðu00; v00Þ in between node u00 at stage

log N and node v00 at stage log N þ 1:
Before presenting an example showing how algorithm
# -Decomposition works, for the sake of clearness

we add some details omitted in the pseudocode. First
observe that phase a must decompose the first log N

stages of G as LCP of a r (first factor) and a D
(second factor); hence, the output of algorithm D#r-
Decomposition executed during this phase must be
slightly modified: actually, the pairs of labels must be
inverted.
Notice also that nodes of and not always

follow the rule that node i has children 2i and
2i þ 1; as required by algorithm D#r-Decomposi-
tion, but it is sufficient to slightly modify the code in
order to allow it to be run on opportune portions of
and :

Example. Consider Fig. 11a: it shows an N-MIN2

and a decomposition in factors of the first log N

stages performed by algorithm D#r-Decomposition
(with the modifications just mentioned). In Fig. 11b the
last log N � 1 stages are factorized, and the two
connected components are highlighted. Observe
that first one of the components is completely labeled
(e.g. the dotted one), then the labels of nodes at
stage log N � 1 of the second component are set
according to the labels of the first component and of
edge-stage between stages log N and log N þ 1: Finally,
Fig. 11c shows the factor after phase c has been
executed.

Theorem 12. Given an N-MIN2 G; OðN log NÞ time is

sufficient to compute the specific deriving from the

decomposition of G as # :

Proof. The statement is proved if we show that
algorithm # -Decomposition is correct and that its
time complexity is OðN logNÞ: To this aim, we consider
the algorithm phase by phase.

Correctness. In view of the definition of the N-MIN2;
Phase a of the algorithm never fails and always returns a
labeling.
Also phase b always succeeds, and the consistency of

the labels is guaranteed from the fact that the starting
labels of the second connected component are not
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Fig. 11. An example showing how algorithm # -Decomposition works.
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arbitrary, but are led by the labeling of the first
component.
At the end of these two phases all nodes of G have

been labeled, and hence decomposed as LCP. During
phase c the only edge-stage characterizing each (and
hence each N-MIN2) is built, exploiting the labels
representing the decomposition in factors.
From the proof of Theorem 11, from the definition of

G and from the definition of LCP, the correctness of the
algorithm follows.

Time complexity. The first two phases run in
OðNlog NÞ time (cf. Theorem 11); the third phase
considers all edges between stages log N and log N þ 1
of G once, and therefore runs in OðNÞ time. &
5.2. Decomposing into prime factors

In view of Theorem 6, checking the equivalence of
two N-MIN2s can be reduced to the simpler problem of
checking the equivalence of their factors, if they have
been opportunely constructed. To this aim, we further
decompose the s into their prime factors and then we
compare them pairwise.
In Section 2, we have shown the decomposition

of D and r in terms of prime factors, i.e. D ¼
L1#L2#?#Llog N�1 and r ¼ V1#V2#?#
Vlog N�1 (see Li and Vi in Fig. 3).
We can decompose any as the LCP of log N � 1 Fi;j

(see Fi;j in Fig. 3), where the values of i and j depend on
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the specific ; and i and j must have the following
properties:

* 1piplog N � 1 and log Npjp2 log N � 2;
* for any pair of factors Fi;j and Fi0;j0 ; it must be iai0

and jaj0; i.e. each fixed value of iðjÞ appears exactly
once.

Two examples of decomposition of s into prime
factors are shown in Fig. 12 in the case N ¼ 8:
A possible way to efficiently determine Fi;j

factors of consists in exploiting simple cycles
from i to j inside : More precisely, starting from any
node v of the upper part of at layer i; it is easy to
look for the value *; such that there exists a simple
cycle from i to *; passing through v: In view of Lemma 3,
this implies that Fi; *; is a factor of : This operation
takes OðNÞ time as we have to search possibly the
whole :
All Fi;j factors can be found repeating the previous

search once for each i ¼ 1;y; log N � 1: Indeed, the
simplicity of Fi;j factors implies that if Fi; *; is a factor of
; then each node at layer i in belongs to a simple

cycle from i to *; :
It follows that the whole decomposition of into

prime factors can be done in OðN log NÞ time.
Now, we are ready to detail the whole algorithm

checking the equivalence of two N-MIN2s:
Algorithm Compare-N-MIN2s

Input: two ð2 log N � 1Þ layer N-MIN2s G0 and G00;
Output: 1 if the N-MIN2s are topologically equiva-

lent; 0 otherwise.
a.
 Decomposing N-MIN2s
Run algorithm # -Decomposition on G0 and

produce
0
;

Run algorithm # -Decomposition on G00 and
produce

00
;

b.
 Decomposing s into prime factors
Run procedure decomposing s into Fi;j factors

both on
0
and on

00
;

c.
(c)

Fig. 13. (a) Two equivalent s, with dn-labels and labels on their

layers; (b) performing the algorithm looking for the simple cycles and

hence Fi;j factors; (c) Fi;j factors of the given s.
Comparing Fi;j factors

Sort Fi;j factors of
0
according to increasing

index i producing the ordered list
/j01; j02;y; j0log N�1S;
Do the same for

00
producing

/j001 ; j002 ;y; j00log N�1S;
Fig. 12. Two s with N ¼ 8 decompos
For i ¼ 1 to log N � 1 do
if ðj0iaj00i Þ
then return 0;

return 1.
Example. Consider the two s depicted in Fig. 13b as

outputs of Phase a of algorithm Compare N-MIN2s:
Phase b looks for simple cycles from each i to some j (see
Fig. 13b) decomposing both s into their prime factors,
ed into prime factors.
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Fig. 14. A with N ¼ 8 decomposed into prime factors.
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depicted in Fig. 13c. From them, Phase c deduces that
the input N-MIN2s are topologically equivalent.

Theorem 13. Given two N-MIN2s; OðN log NÞ time is

sufficient to check their topological equivalence.

Proof. We prove the assertion by showing that algo-
rithm Compare-N-MIN2s is correct and it runs in
OðN log NÞ time.

Correctness. It directly descends from Theorem 6,
from the associativity of LCP, and from all previous
correctness proofs.

Time complexity. It is OðN log NÞ since both Phases a
and b take OðN log NÞ time, and Phase c takes time
proportional to the length of the sequences, i.e.
Oðlog NÞ: &

5.3. Characterization of equivalence class

We conclude this section providing a characterization
of equivalence classes of N-MIN2s in terms of prime
factors and Butterfly-like stages, and we compute the
number of equivalence classes. We observe that ¼
V1#?#Vlog N�1#Llog N#?#L2 log N�2 (see Fig. 14
in the case N ¼ 8). Reminding the decomposition into
prime factors of ; it follows that any N-MIN2 G is
decomposable into prime factors as LCP of
V1#V2#?#Vlog N�1#Llog N#
Llog Nþ1#?#L2 log N�2#Fi1;j1#?# Filog N�1;jlog N�1 ;
where values of indices of Fi;j factors depend on the
specific N-MIN2; that is on the specific :
Since the LCP is commutative and associative, we

can re-sort the prime factors according to their indices
and group them into triples Fi;j#Vi#Lj ¼ Xi;j (see
Fig. 4).
The following theorem holds:

Theorem 14. Each N-MIN2 is the LCP of exactly

ðlog N � 1ÞXi;js, where the indices of each Xi;j have the

following properties:
a: for each fixed *i; 1p*iplog N � 1; there exists

exactly one X*i;j;
b: for each fixed *; ; log Np *;p2 log N � 2; there exists

exactly one Xi; *; :
From the previous reasonings we are able to decom-
pose any N-MIN2 into its Xi;j factors in OðN log NÞ
time. Now we specify how each Xi;j factor contributes
on the representation of the resulting G; in terms of
Butterfly-like edge-stages.
We can consider the set of Xi;js ordered with

respect to their first index: Xlog N�1;jlog N�1#
Xlog N�2;jlog N�2#?#X2;j2#X1;j1 : In this order, the
general Xi;j is the ðlog N � iÞth factor and, in corre-
spondence of edge-stages i and j; it produces two ith
Butterfly-like edge-stages, i.e. the edge-stages with
crosses of width 2i � 1 (see Fig. 15). In other words,
after ordinately multiplying these factors, we get a N-
MIN2 equivalent to G with the property that the
upper Reverse Baseline equivalent network is a
Reverse Butterfly, while the lower one is any
permutation of all the possible Butterfly-like edge-
stages. It is easy to see that different sequences
of j indexes in the list of Xi;j factors lead to non-
equivalent N-MIN2s; hence, we can choose these
special N-MIN2s as particular representatives of each
equivalence class. Furthermore, since the number of
possible permutations of the lower (log N � 1) edge-
stages is ðlog N � 1Þ! we can also state the following
theorem:

Theorem 15. The number of distinct equivalence classes

of N-MIN2s is ðlog N � 1Þ!

It follows that also the number of different s must be
ðlog N � 1Þ!; as highlighted in Fig. 16.
It is straightforward to notice that, for each fixed N;

the number of equivalence classes is different. This
implies that any two N-MIN2s belonging to different
classes for a certain N can fall in the same class for a
smaller N:
6. Conclusions and open problems

In this paper we have proposed a new general
characterization of topological equivalence of
N-MINs based on the LCP. Then, we have applied
this characterization to log N and ð2 log N � 1Þ stage
N-MINs.
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Fig. 15. All the possible ways of multiplying Xi;js and the representative of the corresponding equivalence class obtained by using only Butterfly-like

stages, for N ¼ 16:

Fig. 16. All the possible s related to N ¼ 16 and a representative of the corresponding equivalence class.
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Namely, we have designed an algorithm to
determine if a given log N stage N-MIN is
topologically equivalent to the Reverse Baseline. This
algorithm is optimal, as other well known ones in the
literature, but its interest lies in the novel approach to
the problem.
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About ð2 log N � 1Þ stage N-MINs (N-MIN2s), we
have provided an optimal algorithm testing the
equivalence of two N-MIN2s: This result improves of
a factor N3 the previously known one and definitely
closes the equivalence problem on N-MIN2s:
Observe that the results for log N and ð2 log N � 1Þ

stage N-MINs are different, since the first one checks
the belonging to the equivalence class whose the Reverse
Baseline is a representative, while the second one checks
the equivalence of any two N-MIN2s: Nevertheless, it
does not seem easy to cover this gap using the LCP,
since it is not clear how to specify the properties of the
complement of the equivalence class which the Reverse
Baseline belongs to.
The technique used to check the equivalence of two

N-MIN2s has also led to determine the number of
different equivalence classes and to characterize them.
Namely, we have characterized each equivalence class
by means of Xi;j factors. Furthermore, we have proved
that a representative of each equivalence class can be
visualized as an N-input Reverse Butterfly concatenated
with a log N stage N-MIN obtained as any permutation
of the Butterfly-like edge-stages. This is the first result
giving body to the equivalence classes not containing the
most popular and studied N-MIN2s and contributes to
approach problems on N-MIN2s independently from
the graphical appearance of the specific network.
Finally, the characterization of the equivalence classes

of N-MIN2s allows one to do some considerations
about the rearrangeability; this is the subject of a further
paper [6].
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