Advanced Parallel Architecture Lesson 4

Annalisa Massini - 2014/2015

Modules and connections

Components and connections

- The CU and the ALU constitute the Central Processing Unit
- Data and instructions need to get into the system and results out
 - Input/output
- Temporary storage of code, data and results is needed
 - Main memory
- All the units must be connected
- Different type of connection for different type of unit
 - Memory
 - Input/Output
 - CPU

Memory Connection

- Receives and sends data
- Receives addresses (of locations)
- Receives control signals
 - Read
 - Write
 - Timing

Input/Output Connection

- Output
 - Receive data from computer
 - Send data to peripheral
- Input
 - Receive data from peripheral
 - Send data to computer
- Receive control signals from computer
- Send control signals to peripherals
- Receive addresses from computer
 - e.g. port number to identify peripheral
- Send interrupt signals (control)

5

CPU Connection

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- A Bus is a communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Buses Data Bus

- Data Bus Carries data
 - there is no difference between "data" and "instruction"
 - Width is a key determinant of performance (8, 16, 32, 64 bit)
- Address Bus Identify the source or destination of data
 - e.g. CPU needs to read an instruction (data) from a given location in memory
 - Bus width determines maximum memory capacity of system
- Control Bus Control and timing information
 - Memory read/write signal
 - Interrupt request
 - Clock signals

Bus Interconnection Scheme

Physical Realization of Bus Architecture

Single Bus Problems

Lots of devices on one bus leads to:

- Propagation delays
 - Co-ordination of bus use can affect performance (long data paths)
 - If aggregate data transfer approaches bus capacity
- Most systems use multiple buses to overcome these problems

 Processor
 Local Bus

High Performance Bus

Memory Hierarchy

Memory Hierarchy

- Registers
 - In CPU
- Internal or Main memory
 - More levels of cache
 - "RAM"
- External memory
 - Backing store

- Location
 - ► CPU
 - Internal
 - External
- Capacity
 - Word size
 - Number of words
- Unit of transfer
 - Internal: Usually governed by data bus width
 - External: Usually a block which is much larger than a word
 - Addressable unit: Smallest location uniquely addressed

Access method

- Sequential (e.g. tape)
 - Start at the beginning and read through in order
 - Access time depends on location of data and previous location
- Direct (e.g. disk)
 - Individual blocks have unique address
 - Access is by jumping to vicinity plus sequential search
 - Access time depends on location and previous location

Access method

- Random (e.g. RAM)
 - Individual addresses identify locations exactly
 - Access time is independent of location or previous access
- Associative
 - > Data is located by a comparison with contents of a portion of the store
 - Access time is independent of location or previous access

Performance

Access time

Time between presenting the address and getting the valid data

Memory Cycle time

- Time may be required for the memory to "recover" before next access
- Cycle time is access + recovery

Transfer Rate

Rate at which data can be moved

Physical type

- Semiconductor (RAM)
- Magnetic (Disk & Tape)
- Optical (CD & DVD)
- Physical characteristics
 - Decay
 - Volatility
 - Erasable
 - Power consumption
- Organisation
 - Physical arrangement of bits into words
 - Not always obvious (e.g. interleaved)

Hierarchy List

- Registers
- L1 Cache
- L2 Cache
- L3 Cache
- Main memory
- Disk cache
- Disk
- Optical
- Tape

Cache Memory

Cache

- Small amount of fast memory
- Sits between normal main memory and CPU
- May be located on CPU chip or module

Cache and Main Memory

Cache/Main Memory Structure

25

Cache operation – overview

- CPU requests contents of memory location
- Check cache for this data
- If present:
 - get from cache
 - else read required block from main memory to cache
- Then deliver to CPU
- Cache includes tags to identify which block of main memory is in each cache slot

Cache Design

- Addressing
- Size
- Mapping Function
- Replacement Algorithm
- Write Policy
- Block Size
- Number of Caches

Cache Addressing

- Where does cache sit?
 - Between processor and virtual MMU
 - Between MMU and main memory
- Logical cache (virtual cache) stores data using virtual addresses
 - Processor accesses cache directly, not thorough physical cache
 - Cache access faster, before MMU address translation
 - Virtual addresses use same address space for different applications
 - Must flush cache on each context switch
- Physical cache stores data using main memory physical

addresses

Size does matter

Cost

- More cache is expensive
- Speed
 - More cache is faster (up to a point)
 - Checking cache for data takes time

Direct Mapping

- Each block of main memory maps to only one cache line
 - i.e. if a block is in cache, it must be in one specific place
- Address is in two parts
- Least Significant w bits identify unique word
- Most Significant s bits specify one memory block
- The MSBs are split into a cache line field r and a tag of s-r (most significant)

Tag s-r	Line or Slot r	Word w
8	14	2

Direct Mapping from Cache to Main Memory

Direct Mapping Cache Organization

Direct Mapping pros & cons

- Simple
- Inexpensive
- Fixed location for given block
 - If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very high

Associative Mapping

- A main memory block can load into any line of cache
- Memory address is interpreted as tag and word
- Tag uniquely identifies block of memory
- Every line's tag is examined for a match
- Cache searching gets expensive

	Word
Tag 22 bit	2 bit

Associative Mapping from Cache to Main Memory

Fully Associative Cache Organization

Associative Mapping Address Structure

Tag 22 bit	Word 2 bit

- > 22 bit tag stored with each 32 bit block of data
- Compare tag field with tag entry in cache to check for hit
- Least significant 2 bits of address identify which 16 bit word is required from 32 bit data block
- e.g.

Address	Tag	Data	Cache line
FFFFC	FFFFC	24682468	3FFF

Associative Mapping Summary

- Address length = (s + w) bits
- Number of addressable units = 2^{s+w} words or bytes
- Block size = line size = 2^w words or bytes
- Number of blocks in main memory = 2 s+w/2w = 2s
- Number of lines in cache = undetermined
- Size of tag = s bits

Set Associative Mapping

- Cache is divided into a number of sets
- Each set contains a number of lines
- A given block maps to any line in a given set
 - e.g. Block B can be in any line of set i
- e.g. 2 lines per set
 - 2 way associative mapping
 - A given block can be in one of 2 lines in only one set

Mapping From Main Memory to Cache: v Associative

Advanced and Parallel Architectures 2014/2015

Mapping From Main Memory to Cache: k-way Associative

K-Way Set Associative Cache Organization

Set Associative Mapping Address Structure

Tag 9 bit	Set 13 bit	Word 2 bit
-----------	------------	---------------

- Use set field to determine cache set to look in
- Compare tag field to see if we have a hit
- e.g
 - Address Tag Data Set number
 1FF 7FFC 1FF 12345678 1FFF
 001 7FFC 001 11223344 1FFF

Set Associative Mapping Summary

- Address length = (s + w) bits
- Number of addressable units = 2^{s+w} words or bytes
- Block size = line size = 2^w words or bytes
- Number of blocks in main memory = 2^d
- Number of lines in set = k
- Number of sets = v = 2^d
- Number of lines in cache = kv = k * 2d
- ► Size of tag = (s d) bits

Replacement Algorithms

- Direct mapping
 - No choice
 - Each block only maps to one line
 - Replace that line
- Associative & Set Associative
 - Hardware implemented algorithm (speed)
 - Least Recently used (LRU)
 - but in 2 way set associative "Which of the 2 block is lru?"
 - First in first out (FIFO)
 - Least frequently used
 - replace block which has had fewest hits
 - Random

Write Policy

- Not overwrite a cache block if main memory is up to date
 - I/O may address main memory directly

Write through

- All writes go to main memory as well as cache
- Lots of traffic
- Slows down writes

Write back

- Updates initially made in cache only and update bit is set
- If block is to be replaced, write to main memory only if update bit is set
- Other caches get out of sync
- I/O must access main memory through cache

Line Size

- Retrieve not only desired word but a number of adjacent words as well
- Increased block size will increase hit ratio at first
 - the principle of locality
- Hit ratio will decreases as block becomes even bigger
 - Probability of using newly fetched information becomes less than probability of reusing replaced
- Larger blocks
 - Reduce number of blocks that fit in cache
 - Data overwritten shortly after being fetched
 - Each additional word is less local so less likely to be needed
- No definitive optimum value has been found
- 8 to 64 bytes seems reasonable
- For HPC systems, 64 and 128 byte most common

Multilevel Caches

- High logic density enables caches on chip
 - Faster than bus access
 - Frees bus for other transfers
- Common to use both on and off chip cache
 - L1 on chip, L2 off chip in static RAM
 - L2 access much faster than DRAM or ROM
 - L2 often uses separate data path
 - L2 may now be on chip
 - Resulting in L3 cache
 - Bus access or now on chip...

Unified v Split Caches

- One cache for data and instructions or two, one for data and one for instructions
- Advantages of unified cache
 - Higher hit rate
 - Balances load of instruction and data fetch
 - Only one cache to design & implement
- Advantages of split cache
 - Eliminates cache contention between instruction fetch/decode unit and execution unit
 - Important in pipelining

Internal Memory

Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte- level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory Not possible Masks			
Programmable ROM (PROM)			Electrically	Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip- level		
Electrically Erasable PROM (EEPROM)		Electrically, byte- level		
Flash memory		Electrically, block- level		

Semiconductor Memory

RAM

- Misnamed as all semiconductor memory is random access
- Read/Write
- Volatile
- Temporary storage
- Static or dynamic

Memory Cell Operation

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analog
 - Level of charge determines value

54

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital

55

Uses flip-flops

SRAM v DRAM

Both volatile

Power needed to preserve data

Dynamic cell

- Simpler to build, smaller
- More dense
- Less expensive
- Needs refresh
- Larger memory units
- Static
 - Faster
 - Cache

Read Only Memory (ROM)

- Permanent storage
 - Nonvolatile
- Microprogramming
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically

Organisation

- A 16Mbit chip can be organised as 1M of 16 bit words
- A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on
- A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array
 - Reduces number of address pins
 - Multiplex row address and column address
 - ▶ 11 pins to address (2¹¹=2048)
 - Adding one more pin doubles range of values so x4 capacity

Typical 16 Mb DRAM (4M x 4)

Advanced and Parallel Architectures 2014/2015

60

1MByte Module Organisation

Advanced and Parallel Architectures 2014/2015

62

Interleaved Memory

- Main memory is composed of a collection of DRAM memory chips that can be grouped together to form a memory bank
- It is possible to organize the memory banks in a way known as interleaved memory.
- Each bank is independently able to service a memory read or write request, so that a system with K banks can service K requests simultaneously, increasing memory read or write rates by a factor of K.
- If consecutive words of memory are stored in different banks, then the transfer of a block of memory is speeded up

Advanced DRAM Organization

- Basic DRAM same since first RAM chips
- Enhanced DRAM
 - Contains small SRAM as well
 - SRAM holds last line read (c.f. Cache!)
- Cache DRAM
 - Larger SRAM component
 - Use as cache or serial buffer

Synchronous DRAM (SDRAM)

- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock, CPU knows when data will be ready
- CPU does not have to wait, it can do something else
- Burst mode allows SDRAM to set up stream of data and fire it out in block
- DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)

SDRAM

DDR SDRAM

- SDRAM can only send data once per clock
- Double-data-rate SDRAM can send data twice per clock cycle
 - Rising edge and falling edge

External Memory

Types of External Memory

- Magnetic Disk
 - ► RAID
 - Removable
- Optical
 - CD-ROM
 - CD-Recordable (CD-R)
 - CD-R/W
 - DVD
- Magnetic Tape

Magnetic Disk

- Disk substrate coated with magnetizable material
- Substrate used to be aluminium
- Now glass
 - Improved surface uniformity
 - Increases reliability
 - Reduction in surface defects
 - Reduced read/write errors
 - Lower flight heights (See later)
 - Better stiffness
 - Better shock/damage resistance

Read and Write Mechanisms

- Recording & retrieval via conductive coil called a head
- May be single read/write head or separate ones
- During read/write, head is stationary, platter rotates
- Write
 - Current through coil produces magnetic field
 - Pulses sent to head
 - Magnetic pattern recorded on surface below
 - Higher storage density and speed

Read and Write Mechanisms

- Read (traditional)
 - Magnetic field moving relative to coil produces current
 - Coil is the same for read and write
- Read (contemporary)
 - Separate read head, close to write head
 - Partially shielded magneto resistive (MR) sensor
 - Electrical resistance depends on direction of magnetic field
 - High frequency operation
 - Higher storage density and speed

Data Organization and Formatting

- Concentric rings or tracks
 - Gaps between tracks
 - Reduce gap to increase capacity
 - Same number of bits per track (variable packing density)
 - Constant angular velocity
- Tracks divided into sectors
- Minimum block size is one sector
- May have more than one sector per block

Disk Velocity

- Bit near centre of rotating disk passes fixed point slower than bit on outside of disk
- Increase spacing between bits in different tracks
- Rotate disk at constant angular velocity (CAV)
 - Gives pie shaped sectors and concentric tracks
 - Individual tracks and sectors addressable
 - Move head to given track and wait for given sector
 - Waste of space on outer tracks
 - Lower data density
- Can use zones to increase capacity
 - Each zone has fixed bits per track
 - More complex circuitry

Disk Layout Methods Diagram

(a) Constant angular velocity

(b) Multiple zoned recording

Advanced and Parallel Architectures 2014/2015

Finding Sectors

- Must be able to identify start of track and sector
- Format disk
 - Additional information not available to user
 - Marks tracks and sectors

Characteristics

- Fixed (rare) or movable head
- Removable or fixed
- Single or double (usually) sided
- Single or multiple platter
- Head mechanism
 - Contact (Floppy)
 - Fixed gap
 - Flying (Winchester)

Fixed/Movable Head Disk

- Fixed head
 - One read write head per track
 - Heads mounted on fixed ridged arm
- Movable head
 - One read write head per side
 - Mounted on a movable arm

Removable or Not

- Removable disk
 - Can be removed from drive and replaced with another disk
 - Provides unlimited storage capacity
 - Easy data transfer between systems
- Nonremovable disk
 - Permanently mounted in the drive

Multiple Platter

- One head per side
- Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - reduces head movement
 - Increases speed (transfer rate)

Winchester Hard Disk

- Developed by IBM in Winchester (USA)
- Sealed unit
- One or more platters (disks)
- Heads fly on boundary layer of air as disk spins
- Very small head to disk gap
- Getting more robust
- Universal
- Cheap
- Fastest external storage
- Getting larger all the time
 - > 250 Gigabyte now easily available

Speed

- Seek time
 - Moving head to correct track
- (Rotational) latency
 - Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate

- Redundant Array of Independent Disks
- Redundant Array of Inexpensive Disks
- 6 levels in common use
- Not a hierarchy
- Set of physical disks viewed as single logical drive by O/S
- Data distributed across physical drives
- Can use redundant capacity to store parity information

RAID 0

- No redundancy
- Data striped across all disks
- Round Robin striping
- Increase speed
 - Multiple data requests probably not on same disk
 - Disks seek in parallel
 - A set of data is likely to be striped across multiple disks

RAID 1

- Mirrored Disks
- Data is striped across disks
- 2 copies of each stripe on separate disks
- Read from either
- Write to both
- Recovery is simple
 - Swap faulty disk & re-mirror
 - No down time
- Expensive

RAID 2

- Disks are synchronized
- Very small stripes
 - Often single byte/word
- Error correction calculated across corresponding bits on disks
- Multiple parity disks store Hamming code error
- Lots of redundancy (expensive)

RAID 3

- Similar to RAID 2
- Only one redundant disk, no matter how large the array
- Simple parity bit for each set of corresponding bits
- Data on failed drive can be reconstructed from surviving data and parity info
- Very high transfer rates

RAID 4

- Each disk operates
 independently
- Good for high I/O request rate
- Large stripes
- Bit by bit parity calculated across stripes on each disk
- Parity stored on parity disk
 86

RAID 5

- Like RAID 4
- Parity striped across all disks
- Round robin allocation for parity stripe
- Avoids RAID 4
 bottleneck at
 parity disk
- Commonly used in network servers

Advanced and Parallel Architectures 2013/2015

- RAID 6
- Two parity calculations
- Stored in separate blocks on different disks
- User requirement of N disks needs N+2
- High data availability
 - Three disks need to fail for data loss
 - Significant write

RAID 0, 1, 2

(a) RAID 0 (non-redundant)

_ _ _

(b) RAID 1 (mirrored)

(c) RAID 2 (redundancy through Hamming Cond and Parallel Architectures 2014/2015

RAID 3 & 4

RAID 5 & 6

(f) RAID 5 (block-level distributed parity)

(g) RAID 6 (dual redundancy)

89

Advanced and Parallel Architectures 2014/2015

Optical Storage CD-ROM

- Originally for audio
- 650Mbytes giving over 70 minutes audio
- Polycarbonate coated with highly reflective coat, usually aluminium
- Data stored as pits
- Read by reflecting laser
- Constant packing density
- Constant linear velocity

CD Operation

CD-ROM Drive Speeds

- Audio is single speed
 - Constant linier velocity
 - ▶ 1.2 ms⁻¹
 - Track (spiral) is 5.27km long
 - Gives 4391 seconds = 73.2 minutes
- Other speeds are quoted as multiples
- ▶ e.g. 24x
- Quoted figure is maximum drive can achieve

CD-ROM Format

- Mode 0=blank data field
- Mode 1=2048 byte data+error correction
- Mode 2=2336 byte data

Random Access on CD-ROM

- Difficult
- Move head to rough position
- Set correct speed
- Read address
- Adjust to required location
- (Yawn!)

CD-ROM for & against

- Large capacity (?)
- Easy to mass produce
- Removable
- Robust
- Expensive for small runs
- Slow
- Read only

Other Optical Storage

- CD-Recordable (CD-R)
 - WORM
 - Now affordable
 - Compatible with CD-ROM drives
- CD-RW
 - Erasable
 - Getting cheaper
 - Mostly CD-ROM drive compatible
 - Phase change
 - Material has two different reflectivities in different phase states

DVD - what's in a name?

- Digital Video Disk
 - Used to indicate a player for movies
 - Only plays video disks
- Digital Versatile Disk
 - Used to indicate a computer drive
 - Will read computer disks and play video disks

DVD - technology

- Multi-layer
- Very high capacity (4.7G per layer)
- Full length movie on single disk
 - Using MPEG compression
- Finally standardized
- Movies carry regional coding
- Players only play correct region films
- Can be "fixed"

High Definition Optical Disks

- Designed for high definition videos
- Much higher capacity than DVD
 - Shorter wavelength laser
 - Blue-violet range
 - Smaller pits
- HD-DVD
 - 15GB single side single layer
- Blue-ray
 - Data layer closer to laser
 - Tighter focus, less distortion, smaller pits
 - 25GB on single layer
 - Available read only (BD-ROM), Recordable once (BR-R) and rerecordable (BR-RE)

Optical Memory Characteristics

Advanced and Parallel Architectures 2014/2015

Magnetic Tape

- Serial access
- Slow
- Very cheap
- Backup and archive
- Linear Tape-Open (LTO) Tape Drives
 - Developed late 1990s
 - Open source alternative to proprietary tape systems

Input Output

Input/Output Problems

Input/Output Problems

- Wide variety of peripherals
 - Delivering different amounts of data
 - At different speeds
 - In different formats
- All slower than CPU and RAM
- Need I/O modules
- Input/Output module
- Interface to CPU and Memory
- Interface to one or more peripherals

Generic Model of I/O Module

External Devices

Human readable

- Screen, printer, keyboard
- Machine readable
 - Monitoring and control
- Communication
 - Modem
 - Network Interface Card (NIC)

External Device Block Diagram

Advanced and Parallel Architectures 2014/2015

I/O Module Function

- Control & Timing
- CPU Communication
- Device Communication
- Data Buffering
- Error Detection

I/O Steps

- CPU checks I/O module device status
- I/O module returns status
- If ready, CPU requests data transfer
- I/O module gets data from device
- I/O module transfers data to CPU
- Variations for output, DMA, etc.

I/O Module Diagram

I/O Module Decisions

- Hide or reveal device properties to CPU
- Support multiple or single device
- Control device functions or leave for CPU
- Also O/S decisions
 - e.g. Unix treats everything it can as a file

Input Output Techniques

- Programmed
- Interrupt driven
- Direct Memory Access (DMA)

Three Techniques for Input of a Block of Data

Advanced and Parallel Architectures 2014/2015

Programmed I/O

CPU has direct control over I/O

- Sensing status
- Read/write commands
- Transferring data
- CPU waits for I/O module to complete operation
- Wastes CPU time

Programmed I/O - detail

- CPU requests I/O operation
- I/O module performs operation
- I/O module sets status bits
- CPU checks status bits periodically
- I/O module does not inform CPU directly
- I/O module does not interrupt CPU
- CPU may wait or come back later

I/O Commands

- CPU issues address
 - Identifies module (& device if >1 per module)
- CPU issues command
 - Control telling module what to do
 - e.g. spin up disk
 - Test check status
 - e.g. power? Error?
 - Read/Write
 - Module transfers data via buffer from/to device

Addressing I/O Devices

- Under programmed I/O data transfer is very like memory access (CPU viewpoint)
- Each device given unique identifier
- CPU commands contain identifier (address)

I/O Mapping

- Memory mapped I/O
 - Devices and memory share an address space
 - I/O looks just like memory read/write
 - No special commands for I/O
 - Large selection of memory access commands available
- Isolated I/O
 - Separate address spaces
 - Need I/O or memory select lines
 - Special commands for I/O
 - Limited set

Interrupt Driven I/O

- Overcomes CPU waiting
- No repeated CPU checking of device
- I/O module interrupts when ready

Interrupt Driven I/O - Basic Operation

- CPU issues read command
- I/O module gets data from peripheral whilst CPU does other work
- I/O module interrupts CPU
- CPU requests data
- I/O module transfers data

CPU Viewpoint

- Issue read command
- Do other work
- Check for interrupt at end of each instruction cycle
- If interrupted:-
 - Save context (registers)
 - Process interrupt
 - Fetch data & store
- See Operating Systems notes

Changes in Memory and Registers for an Interrupt

- How do you identify the module issuing the interrupt?
- How do you deal with multiple interrupts?
 - i.e. an interrupt handler being interrupted

Identifying Interrupting Module

- Different line for each module
 - ► PC
 - Limits number of devices
- Software poll
 - CPU asks each module in turn
 - Slow

Identifying Interrupting Module

- Daisy Chain or Hardware poll
 - Interrupt Acknowledge sent down a chain
 - Module responsible places vector on bus
 - CPU uses vector to identify handler routine
- Bus Master
 - Module must claim the bus before it can raise interrupt
 - e.g. PCI & SCSI

Multiple Interrupts

- Each interrupt line has a priority
- Higher priority lines can interrupt lower priority lines
- If bus mastering only current master can interrupt

Direct Memory Access

- Interrupt driven and programmed I/O require active CPU intervention
 - Transfer rate is limited
 - CPU is tied up
- DMA is the answer
- Additional Module (hardware) on bus
- DMA controller takes over from CPU for I/O

Typical DMA Module Diagram

DMA Operation

- CPU tells DMA controller:
 - Read/Write
 - Device address
 - Starting address of memory block for data
 - Amount of data to be transferred
- CPU carries on with other work
- DMA controller deals with transfer
- DMA controller sends interrupt when finished

DMA Transfer - Cycle Stealing

- DMA controller takes over bus for a cycle
- Transfer of one word of data
- Not an interrupt
 - CPU does not switch context
- CPU suspended just before it accesses bus
 - i.e. before an operand or data fetch or a data write
- Slows down CPU but not as much as CPU doing transfer

DMA and Interrupt Breakpoints During an Instruction Cycle

Advanced and Parallel Architectures 2014/2015

DMA Configurations (1)

- Single Bus, Detached DMA controller
- Each transfer uses bus twice
 - I/O to DMA then DMA to memory
- CPU is suspended twice

DMA Configurations (2)

- Single Bus, Integrated DMA controller
- Controller may support >1 device
- Each transfer uses bus once
 - DMA to memory
- CPU is suspended once

DMA Configurations (3)

- Separate I/O Bus
- Bus supports all DMA enabled devices
- Each transfer uses bus once
 - DMA to memory

134

CPU is suspended once

I/O Channels

- I/O devices getting more sophisticated
- e.g. 3D graphics cards
- CPU instructs I/O controller to do transfer
- I/O controller does entire transfer
- Improves speed
 - Takes load off CPU
 - Dedicated processor is faster

I/O Channel Architecture

Advanced and Parallel Architectures 2014/2015

Interfacing

- Connecting devices together
- Bit of wire?
- Dedicated processor/memory/buses?
- E.g. FireWire, InfiniBand

IEEE 1394 FireWire

- High performance serial bus
- Fast
- Low cost
- Easy to implement
- Also being used in digital cameras, VCRs and TV

FireWire Configuration

- Daisy chain
- Up to 63 devices on single port
 - Really 64 of which one is the interface itself
- Up to 1022 buses can be connected with bridges
- Automatic configuration
- No bus terminators
- May be tree structure

Simple FireWire Configuration

InfiniBand

- I/O specification aimed at high end servers
 - Merger of Future I/O (Cisco, HP, Compaq, IBM) and Next Generation I/O (Intel)
- Version 1 released early 2001
- Architecture and spec. for data flow between processor and intelligent I/O devices
- Intended to replace PCI in servers
- Increased capacity, expandability, flexibility

InfiniBand Architecture

- Remote storage, networking and connection between servers
- Attach servers, remote storage, network devices to central fabric of switches and links
- Greater server density
- Scalable data centre
- Independent nodes added as required
- I/O distance from server up to
 - 17m using copper
 - 300m multimode fibre optic
 - 10km single mode fibre
- Up to 30Gbps

InfiniBand Switch Fabric

InfiniBand Operation

- 16 logical channels (virtual lanes) per physical link
- One lane for management, rest for data
- Data in stream of packets
- Virtual lane dedicated temporarily to end to end transfer
- Switch maps traffic from incoming to outgoing lane