
Advanced Parallel Architecture
Lesson 2

Annalisa Massini - 2014/2015

Introduction

2014/2015 Advanced and Parallel Architectures 2

Architectural Trends

2014/2015 Advanced and Parallel Architectures 3

 Advances in technology determine what is possible

 Architecture translates the potential of the technology
into performance and capability

 Two ways to improve performance: parallelism and
locality, but these two compete for the same resources:

 multiple operations performed in parallel

 reduction of number of cycles to execute the program

 but need for resources supporting simultaneous activities

 data references performed close to the processor

 accessing deeper levels of the storage hierarchy avoided

 but need for resources providing local storage

Architectural Trends

2014/2015 Advanced and Parallel Architectures 4

 The best performance is obtained by an intermediate
strategy which devotes resources to exploit a degree of
parallelism and a degree of locality

 Indeed, parallelism and locality interact in interesting
ways in systems of all scales, from within a chip to across
a large parallel machine

 The history of computer architecture is divided into four
generations identified by the basic logic technology:

 tubes

 transistors

 integrated circuits

 VLSI

Generations of Computer

 Vacuum tube - 1946-1957

 Transistor - 1958-1964

 Small scale integration - 1965 on
 Up to 100 devices on a chip

 Medium scale integration - to 1971
 100-3,000 devices on a chip

 Large scale integration - 1971-1977
 3,000 - 100,000 devices on a chip

 Very large scale integration - 1978 -1991
 100,000 - 100,000,000 devices on a chip

 Ultra large scale integration – 1991 -
 Over 100,000,000 devices on a chip

2014/2015 5 Advanced and Parallel Architectures

Architectural Trends

2014/2015 Advanced and Parallel Architectures 6

 There has been tremendous architectural advance

 The strongest delineation in VLSI generation is the kind
of parallelism that is exploited

 The period up to about 1985 is dominated by
advancements in bit-level parallelism, with 4-bit
microprocessors replaced by 8-bit, 16-bit, and so on

 Doubling the width of the datapath reduces the number
of cycles required to perform a full 32-bit operation

 This trend slows once a 32-bit word size is reached in the
mid-80s, and the adoption of 64-bit operation is reached
decade later

Architectural Trends

2014/2015 Advanced and Parallel Architectures 7

 Further increases in word-width will be driven by
demands for improved floating-point representation and
a larger address space, rather than performance.

 With address space requirements growing by less than
one bit per year, the demand for 128-bit operation
appears to be well in the future.

 The early microprocessor period was able to reap the
benefits of the easiest form of parallelism: bit-level
parallelism in every operation.

 Inflection point in the microprocessor growth curve has
been when 32-bit word operation combined with use of
cache (late ‘80s).

2014/2015 Advanced and Parallel Architectures 8

Tr
an

si
st

or
s













 












 









 























 













1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008

i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

Phases in “VLSI” Generation

Architectural Trends

2014/2015 Advanced and Parallel Architectures 9

 The period from the mid-80s to mid-90s is dominated by
advancements in instruction-level parallelism

 The basic steps in instruction processing (instruction
decode, integer arithmetic, and address calculation) can
be performed in a single cycle

 By using caches, the instruction fetch and data access
can be performed in a single cycle, most of the time

 Using the RISC approach - care in the instruction set
design - it is straightforward to pipeline the stages of
instruction execution  an instruction is executed
almost every cycle, on average

Architectural Trends

2014/2015 Advanced and Parallel Architectures 10

 The parallelism in the steps of instruction processing is
exploited across a small number of instructions

 In addition, advances in compiler technology made
instruction pipelines more effective

 The mid-80s microprocessor-based computers consisted
of a set of chips: an integer processing unit, a floating-
point unit, a cache controller, and SRAMs for the cache
data and tag storage

 These components were coalesced into a single chip,
reducing the cost of communicating among them

Architectural Trends

2014/2015 Advanced and Parallel Architectures 11

 In addition to pipelining individual instructions, it
became very attractive to fetch multiple instructions at
a time and issue them in parallel to distinct function
units whenever possible

 This form of instruction level parallelism came to be
called superscalar execution

 More function units were added, more instructions were
fetched at time, and more instructions could be issued in
each clock cycle to the function units

Architectural Trends

2014/2015 Advanced and Parallel Architectures 12

 In order to satisfy the increasing instruction and data
bandwidth requirement, larger and larger caches were
placed on-chip with the processor, further consuming
the ever increasing number of transistors

 With the processor and cache on the same chip, the
path between the two could be made very wide to
satisfy the bandwidth requirement of multiple
instruction and data accesses per cycle

Architectural Trends

2014/2015 Advanced and Parallel Architectures 13

 However, as more instructions are issued each cycle, the
performance impact of each control transfer and each
cache miss becomes more significant

 A control transfer may have to wait for the depth, or
latency, of the processor pipeline, until a particular
instruction reaches the end of the pipeline and
determines which instruction to execute next

 Similarly, instructions which use a value loaded from
memory may cause the processor to wait for the latency
of a cache miss

Architectural Trends

2014/2015 Advanced and Parallel Architectures 14

 Processor designs in the 90s deploy a variety of complex
instruction processing mechanisms in an effort to reduce
the performance degradation in superscalar processors

 Sophisticated branch prediction techniques are used to
avoid pipeline latency by guessing the direction of
control flow before branches are actually resolved

 Larger, more sophisticated caches are used to avoid the
latency of cache misses

 Instructions are scheduled dynamically and allowed to
complete out of order so if one instruction encounters a
miss, other instructions can proceed ahead of it, as long
as they do not depend on the result of the instruction

Architectural Trends

2014/2015 Advanced and Parallel Architectures 15

 A larger window of instructions that are waiting to issue
is maintained within the processor and whenever an
instruction produces a new result, several waiting
instructions may be issued to the function units

 These complex mechanisms allow the processor to
tolerate the latency of a cache-miss or pipeline
dependence when it does occur

 However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost

Architectural Trends

2014/2015 Advanced and Parallel Architectures 16

 Given the expected increases in chip density, the
instruction level parallelism within a single thread of
control was overcome

 The processors and their interconnect are all
implemented on a single silicon chip and the new
technology is multi-core processor

 The emphasis shifts to thread level parallelism,
parallelism available as multiple processes or multiple
threads of control within a process

Architectural Trends

2014/2015 Advanced and Parallel Architectures 17

 By the early 2000s, CPU designers were thwarted from
achieving higher performance from instruction level
parallelism techniques

 The growing disparity between CPU operating
frequencies and main memory operating frequencies as
well as escalating CPU power dissipation implied more
esoteric instruction level parallelism techniques

 CPU designers realize that to aggregate performance of
multiple programs was more important than the
performance of a single thread or program

 This is evidenced by the proliferation of dual and
multiple core CMP (chip-level multiprocessing) designs

Architectural Trends

2014/2015 Advanced and Parallel Architectures 18

 Parallel execution at thread level

 Examples:

 hyper-threading – 2 threads on the same pipeline executed
in parallel (up to 30% speedup)

 multi-core architectures – multiple CPUs on a single chip

 multiprocessor systems (parallel systems)

 manycore architectures (GPUs)

Supercomputers

 The development of parallel architecture is driven by the
request to achieve absolute maximum performance, or
supercomputing

 Although commercial and information processing
applications are increasingly becoming important drivers
of the high end, historically, scientific computing has been
a kind of proving ground for innovative architecture

 In the mid 60’s this included pipelined instruction
processing and dynamic instruction scheduling, which are
commonplace in microprocessors today

2014/2015 Advanced and Parallel Architectures 19

Supercomputers

 Starting in the mid 70’s, supercomputing was dominated
by vector processors, which perform operations on
sequences of data elements - vectors - rather than
individual scalar data

 Vector operations permit more parallelism to be obtained
within a single thread of control

 Also, these vector supercomputers were implemented in
very fast, expensive, high power circuit technologies

 Within the vector processing approach, the single
processor performance improvement is dominated by
modest improvements in cycle time and more substantial
increases in the vector memory bandwidth

2014/2015 Advanced and Parallel Architectures 20

Supercomputers

 In the microprocessor systems, we see the combined
effect of increasing clock rate, on-chip pipelined floating-
point units, increasing on-chip cache size, increasing off-
chip second-level cache size, and increasing use of
instruction level parallelism

 The gap in uniprocessor performance is rapidly closing

 Multiprocessor architectures are adopted by both the
vector processor and microprocessor designs, but the
scale is quite different

 The microprocessor based supercomputers provided
initially about a hundred processors, increasing to roughly
a thousand from 1990 onward

2014/2015 Advanced and Parallel Architectures 21

Supercomputers

 These massively parallel processors (MPPs) have tracked
the microprocessor advance, with typically a lag of one to
two years behind the leading microprocessor-based
workstation or personal computer

 The performance advantage of the MPP systems over
traditional vector supercomputers is less substantial on
more complete applications owing to the relative
immaturity of the programming languages, compilers,
and algorithms, however, the trend toward the MPPs is
still very pronounced

2014/2015 Advanced and Parallel Architectures 22

Summary: Why Parallel Architecture?

2014/2015 Advanced and Parallel Architectures 23

 Increasingly attractive

 Economics, technology, architecture, application demand

 Increasingly central and mainstream

 Parallelism exploited at many levels

 Instruction-level parallelism

 Multiprocessor servers

 Large-scale multiprocessors (“MPPs”)

 Same story from memory system perspective

 Increase bandwidth, reduce average latency with many local
memories

 Spectrum of parallel architectures make sense

 Different cost, performance and scalability

Taxonomy of Computer Architectures

 The idea of obtaining more performance by utilizing
multiple resorce is not a new one

 In 1966 Michael Flynn introduced a taxonomy of
computer architectures that is still the most common way
of categorizing systems with parallel processing capability

 Machines are classified based on how many data items
they can process concurrently and how many different
instructions they can execute at the same time:

 Single instruction, single data stream - SISD

 Single instruction, multiple data stream - SIMD

 Multiple instruction, single data stream - MISD

 Multiple instruction, multiple data stream- MIMD

 2014/2015 24 Advanced and Parallel Architectures

Single Instruction, Single Data Stream - SISD

 Single processor

 Single instruction stream

 Data stored in single memory

 A single processor executes a single instruction at a time
operating on data stored in a single memory

 Uniprocessor fall into this category

 The majority of contemporary CPUs is multicore.

 A single core can be considered a SISD machine

2014/2015 25 Advanced and Parallel Architectures

Single Instruction, Multiple Data Stream - SIMD

 A single machine instruction controls the simultaneous
execution of a number of processing elements on a
lockstep basis

 Each processing element has an associated data memory.

 Each instruction is executed on a different set of data by
the different processors

 Vector and array processors were the first SIMD machines

 GPUs follow this design at the level of Streaming
multiprocessor

2014/2015 26 Advanced and Parallel Architectures

Multiple Instruction, Single Data Stream - MISD

 A sequence of data is transmitted to a set of processors,
each of which executes a different instruction sequence

 This structure is not commercially implemented

 In fact for most applications, MISD computers are rather
awkward to use, but can be useful in applications of a
specialised nature

 A typical example of one such specialised application is
robot vision

 When fault tolerance is required in a system (military or
aerospace application) data can be processed by multiple
machines and decisions can be made on a majority
principle

 2014/2015 27 Advanced and Parallel Architectures

Multiple Instruction, Multiple Data Stream- MIMD

 A set of processors simultaneously execute different
instruction sequences on different data sets

 This architecture is the most common and widely used
form of parallel architectures

 General purpose processors

 Each can process all instructions necessary

 Further classified by method of processor
communication

2014/2015 28 Advanced and Parallel Architectures

Taxonomy of Parallel Processor Architectures

2014/2015 29 Advanced and Parallel Architectures

Speedup

2014/2015 Advanced and Parallel Architectures 30

 A key reference point for both the architect and the
application developer is how the use of parallelism
improves the performance of the application

 We may define the speedup on processors as

 Speedup (p processors) =

 For a fixed problem size (input data set), performance =
1/time

 Speedup fixed problem (p processors) =

Performance (p processors)

Performance (1 processor)

Time (1 processor)

Time (p processors)

2014/2015 Advanced and Parallel Architectures 31

 Performance characteristics determine usage of operations
at a layer

 Programmer, compilers etc make choices based on this

 Fundamentally, three characteristics:

 Latency: time taken for an operation

 Bandwidth: rate of performing operations

 Cost: impact on execution time of program

 If processor does one thing at a time:

 bandwidth (operation per second) is  1/latency

 cost is simply the latency times the number of operations

 But actually it is more complex in modern systems

Communication Performance

2014/2015 Advanced and Parallel Architectures 32

 Modern computer systems do many different operations
at once and the relationship between these performance
metrics is much more complex

 Characteristics apply to overall operations, as well as
individual components of a system

 Since the unique property of parallel computer
architecture is communication, the operations that we
are concerned with most often are data transfers

Communication Performance

2014/2015 Advanced and Parallel Architectures 33

 The time for a data transfer operation is generally
described by a linear model:

 Transfer time (n) = T0 + n/B

 n is the amount of data (e.g. number of bytes),

 B is the transfer rate of the component moving the data (e.g.
bytes per second),

 the constant term T0 is the start-up cost

 This is a very convenient model, and it is used to describe
a diverse collection of operations: messages, memory
accesses, bus transactions, and vector operations

Linear Model of Data Transfer Latency

2014/2015 Advanced and Parallel Architectures 34

 It applies in many aspects of traditional computer
architecture, as well

 For memory operations, it is essentially the access time

 For bus transactions, it reflects the bus arbitration and
command phases

 For any sort of pipelined operation, including pipelined
instruction processing or vector operations, it is the time to
fill pipeline

Linear Model of Data Transfer Latency

2014/2015 Advanced and Parallel Architectures 35

 But linear model not enough:

 It does not give any indication when the next such operation
can be initiated

 It does not indicate whether other useful work can be
performed during the transfer

 These other factors depend on how the transfer is performed:
need to know how transfer is performed

Linear Model of Data Transfer Latency

2014/2015 Advanced and Parallel Architectures 36

 The data transfer in which we are most interested is the one
that occurs across the network in parallel machines

 It is initiated by the processor through the communication
assist

 The essential components of this operation can be
described by the following simple model

Communication Time (n)= Overhead + Network Delay + Occupancy

Communication Cost Model

2014/2015 Advanced and Parallel Architectures 37

Communication Time (n)= Overhead + Network Delay + Occupancy

 The Overhead is the time the processor spends initiating the
transfer

 This may be a fixed cost, if the processor simply has to tell
the communication assist to start, or it may be linear in n, if
the processor has to copy the data into the assist

 The key point is that this is time the processor is busy with
the communication event; it cannot do other useful work or
initiate other communication during this time

Communication Cost Model

2014/2015 Advanced and Parallel Architectures 38

Communication Time (n)= Overhead + Network Delay + Occupancy

 The remaining portions of the communication time is
considered the network latency; it is the part that can be
hidden by other processor operations

 The Occupancy is the time it takes for the data to pass
through the slowest component on the communication
path

Communication Cost Model

2014/2015 Advanced and Parallel Architectures 39

Communication Time (n)= Overhead + Network Delay + Occupancy

 Occupancy :

 The data will occupy other resources, including buffers, switches,
and the communication assist

 Often the communication assist is the bottleneck that determines
the occupancy

 The occupancy limits how frequently communication operations
can be initiated.

 The next data transfer will have to wait until the critical resource
is no longer occupied before it can use that same resource

Communication Cost Model

2014/2015 Advanced and Parallel Architectures 40

Communication Time (n)= Overhead + Network Delay + Occupancy

 The remaining communication time is lumped into the
Network Delay, which includes the time for a bit to be
routed across the actual network and many other factors,
such as the time to get through the communication assist

 From the processors viewpoint, the specific hardware
components contributing to network delay are indistinguishable

 What effects the processor is: - how long it must wait before it
can use the result of a communication event - how much of this
time it can be bust with other activities - and how frequently it
can communicate data

Communication Cost Model

2014/2015 Advanced and Parallel Architectures 41

 A useful model connecting the program characteristics to
the hardware performance is given by

Communication Cost = frequency * (Comm time - overlap)

 The frequency of communication:

 is defined as the number of communication operations per unit
of work in the program

 it depends on many programming factors and many hardware
design factors

Communication Cost Model

2014/2015 Advanced and Parallel Architectures 42

Communication Cost = frequency * (Comm time - overlap)

 The frequency of communication:

 Hardware may limit the transfer size and thereby determine
the minimum number of messages. It may automatically
replicate data or migrate it to where it is used

 There is a certain amount of communication that is inherent to
parallel execution, since data must be shared and processors
must coordinate their work

 A machine can support programs with a high communication
frequency if the other parts of the communication cost are
small: low overhead, low network delay, and small occupancy

Communication Cost Model

