
Advanced Parallel Architecture 
 

Annalisa Massini - 2014/2015 



Vector architecture 

2014/2015 2 Advanced and Parallel Architectures 



 

 

Computer Architecture - A Quantitative Approach, Fifth Edition 

Hennessy Patterson 

 

 Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures 

 Section 4.2 - Vector Architecture 

 

 

2014/2015 3 Advanced and Parallel Architectures 



Cray 1 

2014/2015 Advanced and Parallel Architectures 4 



Vector Architectures 

 Basic idea: 
 Read sets of data elements scattered about memory 

 Place them into vector registers 

 Operate on those registers 

 Disperse the results back into memory 
 

 Registers are controlled by compiler 
 Used to hide memory latency 

 Leverage memory bandwidth 
 

 Since vector loads and stores are deeply pipelined, the 
program pays the long memory latency only once per vector 
load or store versus once per element, thus amortizing the 
latency 

2014/2015 5 Advanced and Parallel Architectures 



VMIPS 

 Example architecture:  VMIPS 
 Loosely based on Cray-1 

 Vector registers 
 Each register holds a 64-element, 64 bits/element vector 

 Register file has 16 read ports and 8 write ports 

 Vector functional units 
 Fully pipelined 

 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 

 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 

 32 floating-point registers 

2014/2015 6 Advanced and Parallel Architectures 



Basic structure of VMIPS vector 
architecture : 
• scalar architecture just like MIPS  
• eight 64-element vector  
• all the functional units are vector 
functional units  
• vector units for logical and integer 
operations  
• the vector and scalar registers have a 
significant number of read and write 
ports to allow multiple simultaneous 
vector operations 
• a set of crossbar switches (thick gray 
lines) connects these ports to the 
inputs and outputs of the vector 
functional units  

2014/2015 7 Advanced and Parallel Architectures 

VMIPS 



2014/2015 Advanced and Parallel Architectures 8 

VMIPS Instructions 



DAXPY in MIPS Instructions 
Example:  DAXPY (double precision a*X+Y) 

 
  L.D  F0,a  ; load scalar a 

  DADDIU  R4,Rx,#512 ; last address to load 

Loop:  L.D  F2,0(Rx) ; load X[i] 

  MUL.D  F2,F2,F0 ; a x X[i] 

  L.D  F4,0(Ry) ; load Y[i] 

  ADD.D  F4,F2,F2 ; a x X[i] + Y[i] 

  S.D  F4,9(Ry) ; store into Y[i] 

  DADDIU  Rx,Rx,#8 ; increment index to X 

  DADDIU  Ry,Ry,#8 ; increment index to Y 

  SUBBU  R20,R4,Rx ; compute bound 

  BNEZ  R20,Loop ; check if done 

 

 Requires almost 600 MIPS ops 

2014/2015 9 Advanced and Parallel Architectures 



VMIPS Instructions 

 ADDVV.D:  add two vectors 

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 

 

 Example:  DAXPY (double precision a*X+Y) 

L.D  F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV V4,V2,V3 ; add 

SV  Ry,V4  ; store the result 

 Requires 6 instructions 

2014/2015 10 Advanced and Parallel Architectures 



Vector Execution Time 

 Execution time depends on three factors: 
 Length of operand vectors 

 Structural hazards 

 Data dependencies 
 

 We can compute the time for a single vector instruction 
given  

 the vector length and  

 the initiation rate, rate at which a vector unit consumes new 
operands and produces new results 

 Assuming initiation rate of one element per clock cycle 
for individual operations we obtain that the execution 
time is approximately the vector length 

 

 

2014/2015 11 Advanced and Parallel Architectures 



Convoy 

 To discuss vector execution and vector performance, we use 
the notion of Convoy 
 Set of vector instructions that could potentially execute together 

 

 We can estimate performance of a section of code by counting 
the number of convoys 

 the instructions in a convoy must not contain any structural 
hazards;  

 if such hazards were present, the instructions would need to be 
serialized and initiated in different Convoys  

 to simplify, we assume that a convoy of instructions must 
complete execution before any other instructions (scalar or 
vector) can begin execution 

2014/2015 12 Advanced and Parallel Architectures 



Chaining 

 Sequences with read-after-write dependency hazards can 
be in the same convey via chaining  

 

 Chaining 
 Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available 

 The results from the first functional unit in the chain are 
“forwarded” to the second functional unit 

 Early implementations of chaining worked just like forwarding 
in scalar pipelining 

 Recent implementations use flexible chaining, which allows a 
vector instruction to chain to any other active vector 
instruction, assuming we don’t generate a structural hazard 

 
2014/2015 13 Advanced and Parallel Architectures 



Chimes 

 To turn convoys into execution time we need a timing 
metric to estimate the time for a convoy: Chime 

 Unit of time to execute one convoy 

 A vector sequence that consists of m convoys executes in m 
chimes 

 For vector length of n, requires approximately m x n clock 
cycles 

 The chime approximation ignores some processor-specific 
overheads, many of which are dependent on vector length.  

 Measuring time in chimes is a better approximation for long 
vectors than for short ones 

2014/2015 14 Advanced and Parallel Architectures 



Chime  

 The most important source of overhead ignored by the chime 
model is vector start-up time 

 Start-up time  is determined by the pipelining latency of vector 
functional unit 

 Assuming the same pipeline depths as Cray-1 
 Floating-point add => 6 clock cycles 

 Floating-point multiply => 7 clock cycles 

 Floating-point divide => 20 clock cycles 

 Vector load => 12 clock cycles 

2014/2015 15 Advanced and Parallel Architectures 



Optimizations 

 

 Multiple Lanes: > 1 element per clock cycle 

 Vector Length Registers: Non-64 wide vectors 

 Vector Mask Registers: IF statements in vector code 

 Memory Banks: Memory system optimizations to support 
vector processors 

 Stride: Multiple dimensional matrices 

 Scatter-Gather: Sparse matrices 

 Programming Vector Architectures: Program structures 
affecting performance 

2014/2015 16 Advanced and Parallel Architectures 



Multiple Lanes 
 The advantage of a vector instruction set is that it allows 

software to pass a large amount of parallel work to hardware 
using only a single short instruction  

 

 The parallel semantics of a vector instruction allow an 
implementation to execute these elemental operations using: 

 a deeply pipelined functional unit 

 an array of parallel functional units 

 a combination of parallel and pipelined functional units 

2014/2015 17 Advanced and Parallel Architectures 



Multiple Lanes 
 Figure illustrates how to improve vector performance by 

using parallel pipelines to execute a vector add instruction 

2014/2015 18 Advanced and Parallel Architectures 



Multiple Lanes 
 In the VMIPS instruction set, all vector arithmetic instructions 

only allow element N of one vector register to take part in 
operations with element N from other vector registers 

 A parallel vector unit can be build by multiple parallel lanes 

2014/2015 19 Advanced and Parallel Architectures 



Vector Length Registers Handling Loops Not Equal to 64 

 Real vector length n in a program is unlikely to match VMIPS 
vector length (which is 64) 

 Vector length is not known at compile time 

 The solution is to create a vector-length register (VLR): 

 controls the length of any vector operation, including a vector load 
or store.  

 but the value in the VLR cannot be greater than the length of the 
vector registers 

 Then we use also the maximum vector length (MVL):  

 determines the number of data elements in a vector of an 
architecture 

2014/2015 20 Advanced and Parallel Architectures 



Vector Length Registers Handling Loops Not Equal to 64 

 If the value of n is greater than the MVL, a technique called 
strip mining is used: 

 Generation of code such that each vector operation is done for a size 
less than or equal to the MVL:  

 one loop that handles any number of iterations that is a multiple of 
the MVL  

 another loop that handles any remaining iterations and must be less 
than the MVL 

 In practice, compilers usually create a single strip-mined loop 
that is parameterized to handle both portions by changing the 
length. 

2014/2015 21 Advanced and Parallel Architectures 



Vector Length Registers Handling Loops Not Equal to 64 

 For example, consider the code for DAXPY: 
for (i=0; i <n; i=i+1) 

Y[i] = a ∗ X[i] + Y[i]; 

 the strip-mined version of the DAXPY loop in C: 
 low = 0; 

VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

 low = low + VL; /*start of next vector*/ 

 VL = MVL; /*reset the length to maximum vector length*/ 

} 

 The length of the first segment is (n % MVL), and all subsequent 
segments are of length MVL 
 2014/2015 22 Advanced and Parallel Architectures 



Vector Mask Registers IF Statements in Vector Loops 

 The presence of conditionals (IF statements) inside loops 
introduce control dependencies into the loop 

 Consider: 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

   X[i] = X[i] – Y[i]; 

 

 This loop cannot normally be vectorized because of the 
conditional execution of the body 

 If the inner loop could be run for the iterations for which 
X[i]≠0, then the subtraction could be vectorized 

2014/2015 23 Advanced and Parallel Architectures 



Vector Mask Registers IF Statements in Vector Loops 

 The solution is vector-mask control 

 Mask registers provide conditional execution of vector instruction 

 When the vector-mask register is enabled, any vector instructions 
operate only on the vector elements whose corresponding entries 
in the vector-mask register are 1 

 Use vector mask register to “disable” elements (if conversion): 
 LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 GFLOPS rate decreases! 

2014/2015 24 Advanced and Parallel Architectures 



Memory Banks Bandwidth for Vector Load/Store Units 

 Memory system must be designed to support high bandwidth 
for vector loads and stores 

 

 Spreading accesses across multiple independent memory 
banks usually delivers the desired rate 

 Control bank addresses independently 

 Load or store non sequential words 

 Support multiple vector processors sharing the same memory 

 

 

2014/2015 25 Advanced and Parallel Architectures 



Stride Handling Multidimensional Arrays in Vector Architectures 

 The position in memory of adjacent elements in a vector may 
not be sequential 

 Consider: 

 for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 

   A[i][j] = 0.0; 

   for (k = 0; k < 100; k=k+1) 

   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

  } 

 Must vectorize multiplication of rows of B with columns of D 

 An array in memory is linearized in either row-major (as in C) or 
column-major (as in Fortran) order, then either the elements in 
the row or in the column are not adjacent in memory 

2014/2015 26 Advanced and Parallel Architectures 



Stride Handling Multidimensional Arrays in Vector Architectures 

 For vector processors, the technique to fetch elements of a 
vector that are not adjacent in memory exploits the Stride 

 The distance separating elements to be gathered into a single register  

 In our example, matrix D has a stride of 100 double words (800 bytes), 
and matrix B has a stride of 1 double word (8 bytes). For column-major 
order, the strides would be reversed.  

 A vector processor can handle strides greater than one, called 
non-unit strides, using only vector load and vector store 
operations with stride capability.  

 This ability to access nonsequential memory locations and to 
reshape them into a dense structure is one of the major 
advantages of a vector processor. 

2014/2015 27 Advanced and Parallel Architectures 



Stride Handling Multidimensional Arrays in Vector Architectures 

 Example: 

 8 memory banks with a bank busy time of 6 cycles and a total 
memory latency of 12 cycles. How long will it take to complete 
a 64-element vector load with a stride of 1? With a stride of 
32? 

 Answer: 

 Stride of 1: number of banks is greater than the bank busy time, so it 
takes  

 12+64 = 76 clock cycles  1.2 cycle per element 

 Stride of 32: the worst case scenario happens when the stride value is a 
multiple of the number of banks, which this is! Every access to memory 
will collide with the previous one! Thus, the total time will be: 

 12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element! 

2014/2015 28 Advanced and Parallel Architectures 



Scatter-Gather Handling Sparse Matrices 

 It is important to have techniques to allow programs with 
sparse matrices to execute in vector mode  

 In a sparse matrix, the elements of a vector are usually stored 
in some compacted form and then accessed indirectly 

 Consider sparse vectors A and C, and vector indices K and M, 
where A and C have the same number (n) of non-zeros: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]];    

 The primary mechanism for supporting sparse matrices is 
gather-scatter operations using index vectors  

 Such operations support moving between a compressed 
representation and normal representation of a sparse matrix 

2014/2015 29 Advanced and Parallel Architectures 



Scatter-Gather Handling Sparse Matrices 

 A gather operation takes an index vector and fetches the 
vector whose elements are at the addresses given by adding a 
base address to the offsets given in the index vector.  

The result is a dense vector in a vector register 

 

 After these elements are operated on in dense form, the 
sparse vector can be stored in expanded form by a scatter 
store, using the same index vector.  

 

 Hardware support for such operations is called gather-scatter  

 

2014/2015 30 Advanced and Parallel Architectures 



Scatter-Gather Handling Sparse Matrices 

 This technique allows code with sparse matrices to run in 
vector mode  

 Ra, Rc, Rk and Rm the starting addresses of vectors 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm   ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 

2014/2015 31 Advanced and Parallel Architectures 



 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 

 

2014/2015 32 Advanced and Parallel Architectures 

Level of vectorization 
among the Perfect Club 
benchmarks executed on 
the Cray Y-MP [Vajapeyam 
1991].  
The first column shows the 
vectorization level 
obtained with the compiler 
without hints 
The second column shows 
the results after the codes 
have been improved with 
hints from a team of Cray 
Research programmers. 

Programming Vector Architectures 


