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Vector Architectures 

 Basic idea: 
 Read sets of data elements scattered about memory 

 Place them into vector registers 

 Operate on those registers 

 Disperse the results back into memory 
 

 Registers are controlled by compiler 
 Used to hide memory latency 

 Leverage memory bandwidth 
 

 Since vector loads and stores are deeply pipelined, the 
program pays the long memory latency only once per vector 
load or store versus once per element, thus amortizing the 
latency 
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VMIPS 

 Example architecture:  VMIPS 
 Loosely based on Cray-1 

 Vector registers 
 Each register holds a 64-element, 64 bits/element vector 

 Register file has 16 read ports and 8 write ports 

 Vector functional units 
 Fully pipelined 

 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 

 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 

 32 floating-point registers 
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Basic structure of VMIPS vector 
architecture : 
• scalar architecture just like MIPS  
• eight 64-element vector  
• all the functional units are vector 
functional units  
• vector units for logical and integer 
operations  
• the vector and scalar registers have a 
significant number of read and write 
ports to allow multiple simultaneous 
vector operations 
• a set of crossbar switches (thick gray 
lines) connects these ports to the 
inputs and outputs of the vector 
functional units  
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VMIPS 
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VMIPS Instructions 



DAXPY in MIPS Instructions 
Example:  DAXPY (double precision a*X+Y) 

 
  L.D  F0,a  ; load scalar a 

  DADDIU  R4,Rx,#512 ; last address to load 

Loop:  L.D  F2,0(Rx) ; load X[i] 

  MUL.D  F2,F2,F0 ; a x X[i] 

  L.D  F4,0(Ry) ; load Y[i] 

  ADD.D  F4,F2,F2 ; a x X[i] + Y[i] 

  S.D  F4,9(Ry) ; store into Y[i] 

  DADDIU  Rx,Rx,#8 ; increment index to X 

  DADDIU  Ry,Ry,#8 ; increment index to Y 

  SUBBU  R20,R4,Rx ; compute bound 

  BNEZ  R20,Loop ; check if done 

 

 Requires almost 600 MIPS ops 
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VMIPS Instructions 

 ADDVV.D:  add two vectors 

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 

 

 Example:  DAXPY (double precision a*X+Y) 

L.D  F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV V4,V2,V3 ; add 

SV  Ry,V4  ; store the result 

 Requires 6 instructions 
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Vector Execution Time 

 Execution time depends on three factors: 
 Length of operand vectors 

 Structural hazards 

 Data dependencies 
 

 We can compute the time for a single vector instruction 
given  

 the vector length and  

 the initiation rate, rate at which a vector unit consumes new 
operands and produces new results 

 Assuming initiation rate of one element per clock cycle 
for individual operations we obtain that the execution 
time is approximately the vector length 
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Convoy 

 To discuss vector execution and vector performance, we use 
the notion of Convoy 
 Set of vector instructions that could potentially execute together 

 

 We can estimate performance of a section of code by counting 
the number of convoys 

 the instructions in a convoy must not contain any structural 
hazards;  

 if such hazards were present, the instructions would need to be 
serialized and initiated in different Convoys  

 to simplify, we assume that a convoy of instructions must 
complete execution before any other instructions (scalar or 
vector) can begin execution 
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Chaining 

 Sequences with read-after-write dependency hazards can 
be in the same convey via chaining  

 

 Chaining 
 Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available 

 The results from the first functional unit in the chain are 
“forwarded” to the second functional unit 

 Early implementations of chaining worked just like forwarding 
in scalar pipelining 

 Recent implementations use flexible chaining, which allows a 
vector instruction to chain to any other active vector 
instruction, assuming we don’t generate a structural hazard 
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Chimes 

 To turn convoys into execution time we need a timing 
metric to estimate the time for a convoy: Chime 

 Unit of time to execute one convoy 

 A vector sequence that consists of m convoys executes in m 
chimes 

 For vector length of n, requires approximately m x n clock 
cycles 

 The chime approximation ignores some processor-specific 
overheads, many of which are dependent on vector length.  

 Measuring time in chimes is a better approximation for long 
vectors than for short ones 
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Chime  

 The most important source of overhead ignored by the chime 
model is vector start-up time 

 Start-up time  is determined by the pipelining latency of vector 
functional unit 

 Assuming the same pipeline depths as Cray-1 
 Floating-point add => 6 clock cycles 

 Floating-point multiply => 7 clock cycles 

 Floating-point divide => 20 clock cycles 

 Vector load => 12 clock cycles 
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Optimizations 

 

 Multiple Lanes: > 1 element per clock cycle 

 Vector Length Registers: Non-64 wide vectors 

 Vector Mask Registers: IF statements in vector code 

 Memory Banks: Memory system optimizations to support 
vector processors 

 Stride: Multiple dimensional matrices 

 Scatter-Gather: Sparse matrices 

 Programming Vector Architectures: Program structures 
affecting performance 

2014/2015 16 Advanced and Parallel Architectures 



Multiple Lanes 
 The advantage of a vector instruction set is that it allows 

software to pass a large amount of parallel work to hardware 
using only a single short instruction  

 

 The parallel semantics of a vector instruction allow an 
implementation to execute these elemental operations using: 

 a deeply pipelined functional unit 

 an array of parallel functional units 

 a combination of parallel and pipelined functional units 
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Multiple Lanes 
 Figure illustrates how to improve vector performance by 

using parallel pipelines to execute a vector add instruction 
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Multiple Lanes 
 In the VMIPS instruction set, all vector arithmetic instructions 

only allow element N of one vector register to take part in 
operations with element N from other vector registers 

 A parallel vector unit can be build by multiple parallel lanes 
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Vector Length Registers Handling Loops Not Equal to 64 

 Real vector length n in a program is unlikely to match VMIPS 
vector length (which is 64) 

 Vector length is not known at compile time 

 The solution is to create a vector-length register (VLR): 

 controls the length of any vector operation, including a vector load 
or store.  

 but the value in the VLR cannot be greater than the length of the 
vector registers 

 Then we use also the maximum vector length (MVL):  

 determines the number of data elements in a vector of an 
architecture 
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Vector Length Registers Handling Loops Not Equal to 64 

 If the value of n is greater than the MVL, a technique called 
strip mining is used: 

 Generation of code such that each vector operation is done for a size 
less than or equal to the MVL:  

 one loop that handles any number of iterations that is a multiple of 
the MVL  

 another loop that handles any remaining iterations and must be less 
than the MVL 

 In practice, compilers usually create a single strip-mined loop 
that is parameterized to handle both portions by changing the 
length. 
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Vector Length Registers Handling Loops Not Equal to 64 

 For example, consider the code for DAXPY: 
for (i=0; i <n; i=i+1) 

Y[i] = a ∗ X[i] + Y[i]; 

 the strip-mined version of the DAXPY loop in C: 
 low = 0; 

VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

 low = low + VL; /*start of next vector*/ 

 VL = MVL; /*reset the length to maximum vector length*/ 

} 

 The length of the first segment is (n % MVL), and all subsequent 
segments are of length MVL 
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Vector Mask Registers IF Statements in Vector Loops 

 The presence of conditionals (IF statements) inside loops 
introduce control dependencies into the loop 

 Consider: 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

   X[i] = X[i] – Y[i]; 

 

 This loop cannot normally be vectorized because of the 
conditional execution of the body 

 If the inner loop could be run for the iterations for which 
X[i]≠0, then the subtraction could be vectorized 
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Vector Mask Registers IF Statements in Vector Loops 

 The solution is vector-mask control 

 Mask registers provide conditional execution of vector instruction 

 When the vector-mask register is enabled, any vector instructions 
operate only on the vector elements whose corresponding entries 
in the vector-mask register are 1 

 Use vector mask register to “disable” elements (if conversion): 
 LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 GFLOPS rate decreases! 
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Memory Banks Bandwidth for Vector Load/Store Units 

 Memory system must be designed to support high bandwidth 
for vector loads and stores 

 

 Spreading accesses across multiple independent memory 
banks usually delivers the desired rate 

 Control bank addresses independently 

 Load or store non sequential words 

 Support multiple vector processors sharing the same memory 
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Stride Handling Multidimensional Arrays in Vector Architectures 

 The position in memory of adjacent elements in a vector may 
not be sequential 

 Consider: 

 for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 

   A[i][j] = 0.0; 

   for (k = 0; k < 100; k=k+1) 

   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

  } 

 Must vectorize multiplication of rows of B with columns of D 

 An array in memory is linearized in either row-major (as in C) or 
column-major (as in Fortran) order, then either the elements in 
the row or in the column are not adjacent in memory 
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Stride Handling Multidimensional Arrays in Vector Architectures 

 For vector processors, the technique to fetch elements of a 
vector that are not adjacent in memory exploits the Stride 

 The distance separating elements to be gathered into a single register  

 In our example, matrix D has a stride of 100 double words (800 bytes), 
and matrix B has a stride of 1 double word (8 bytes). For column-major 
order, the strides would be reversed.  

 A vector processor can handle strides greater than one, called 
non-unit strides, using only vector load and vector store 
operations with stride capability.  

 This ability to access nonsequential memory locations and to 
reshape them into a dense structure is one of the major 
advantages of a vector processor. 
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Stride Handling Multidimensional Arrays in Vector Architectures 

 Example: 

 8 memory banks with a bank busy time of 6 cycles and a total 
memory latency of 12 cycles. How long will it take to complete 
a 64-element vector load with a stride of 1? With a stride of 
32? 

 Answer: 

 Stride of 1: number of banks is greater than the bank busy time, so it 
takes  

 12+64 = 76 clock cycles  1.2 cycle per element 

 Stride of 32: the worst case scenario happens when the stride value is a 
multiple of the number of banks, which this is! Every access to memory 
will collide with the previous one! Thus, the total time will be: 

 12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element! 
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Scatter-Gather Handling Sparse Matrices 

 It is important to have techniques to allow programs with 
sparse matrices to execute in vector mode  

 In a sparse matrix, the elements of a vector are usually stored 
in some compacted form and then accessed indirectly 

 Consider sparse vectors A and C, and vector indices K and M, 
where A and C have the same number (n) of non-zeros: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]];    

 The primary mechanism for supporting sparse matrices is 
gather-scatter operations using index vectors  

 Such operations support moving between a compressed 
representation and normal representation of a sparse matrix 
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Scatter-Gather Handling Sparse Matrices 

 A gather operation takes an index vector and fetches the 
vector whose elements are at the addresses given by adding a 
base address to the offsets given in the index vector.  

The result is a dense vector in a vector register 

 

 After these elements are operated on in dense form, the 
sparse vector can be stored in expanded form by a scatter 
store, using the same index vector.  

 

 Hardware support for such operations is called gather-scatter  
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Scatter-Gather Handling Sparse Matrices 

 This technique allows code with sparse matrices to run in 
vector mode  

 Ra, Rc, Rk and Rm the starting addresses of vectors 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm   ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 
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 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 

 

2014/2015 32 Advanced and Parallel Architectures 

Level of vectorization 
among the Perfect Club 
benchmarks executed on 
the Cray Y-MP [Vajapeyam 
1991].  
The first column shows the 
vectorization level 
obtained with the compiler 
without hints 
The second column shows 
the results after the codes 
have been improved with 
hints from a team of Cray 
Research programmers. 

Programming Vector Architectures 


