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Vector Architectures 

 Basic idea: 
 Read sets of data elements scattered about memory 

 Place them into vector registers 

 Operate on those registers 

 Disperse the results back into memory 
 

 Registers are controlled by compiler 
 Used to hide memory latency 

 Leverage memory bandwidth 
 

 Since vector loads and stores are deeply pipelined, the 
program pays the long memory latency only once per vector 
load or store versus once per element, thus amortizing the 
latency 
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VMIPS 

 Example architecture:  VMIPS 
 Loosely based on Cray-1 

 Vector registers 
 Each register holds a 64-element, 64 bits/element vector 

 Register file has 16 read ports and 8 write ports 

 Vector functional units 
 Fully pipelined 

 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 

 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 

 32 floating-point registers 
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Basic structure of VMIPS vector 
architecture : 
• scalar architecture just like MIPS  
• eight 64-element vector  
• all the functional units are vector 
functional units  
• vector units for logical and integer 
operations  
• the vector and scalar registers have a 
significant number of read and write 
ports to allow multiple simultaneous 
vector operations 
• a set of crossbar switches (thick gray 
lines) connects these ports to the 
inputs and outputs of the vector 
functional units  
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VMIPS 
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VMIPS Instructions 



DAXPY in MIPS Instructions 
Example:  DAXPY (double precision a*X+Y) 

 
  L.D  F0,a  ; load scalar a 

  DADDIU  R4,Rx,#512 ; last address to load 

Loop:  L.D  F2,0(Rx) ; load X[i] 

  MUL.D  F2,F2,F0 ; a x X[i] 

  L.D  F4,0(Ry) ; load Y[i] 

  ADD.D  F4,F2,F2 ; a x X[i] + Y[i] 

  S.D  F4,9(Ry) ; store into Y[i] 

  DADDIU  Rx,Rx,#8 ; increment index to X 

  DADDIU  Ry,Ry,#8 ; increment index to Y 

  SUBBU  R20,R4,Rx ; compute bound 

  BNEZ  R20,Loop ; check if done 

 

 Requires almost 600 MIPS ops 

2014/2015 9 Advanced and Parallel Architectures 



VMIPS Instructions 

 ADDVV.D:  add two vectors 

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 

 

 Example:  DAXPY (double precision a*X+Y) 

L.D  F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV V4,V2,V3 ; add 

SV  Ry,V4  ; store the result 

 Requires 6 instructions 
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Vector Execution Time 

 Execution time depends on three factors: 
 Length of operand vectors 

 Structural hazards 

 Data dependencies 
 

 We can compute the time for a single vector instruction 
given  

 the vector length and  

 the initiation rate, rate at which a vector unit consumes new 
operands and produces new results 

 Assuming initiation rate of one element per clock cycle 
for individual operations we obtain that the execution 
time is approximately the vector length 
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Convoy 

 To discuss vector execution and vector performance, we use 
the notion of Convoy 
 Set of vector instructions that could potentially execute together 

 

 We can estimate performance of a section of code by counting 
the number of convoys 

 the instructions in a convoy must not contain any structural 
hazards;  

 if such hazards were present, the instructions would need to be 
serialized and initiated in different Convoys  

 to simplify, we assume that a convoy of instructions must 
complete execution before any other instructions (scalar or 
vector) can begin execution 
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Chaining 

 Sequences with read-after-write dependency hazards can 
be in the same convey via chaining  

 

 Chaining 
 Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available 

 The results from the first functional unit in the chain are 
“forwarded” to the second functional unit 

 Early implementations of chaining worked just like forwarding 
in scalar pipelining 

 Recent implementations use flexible chaining, which allows a 
vector instruction to chain to any other active vector 
instruction, assuming we don’t generate a structural hazard 
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Chimes 

 To turn convoys into execution time we need a timing 
metric to estimate the time for a convoy: Chime 

 Unit of time to execute one convoy 

 A vector sequence that consists of m convoys executes in m 
chimes 

 For vector length of n, requires approximately m x n clock 
cycles 

 The chime approximation ignores some processor-specific 
overheads, many of which are dependent on vector length.  

 Measuring time in chimes is a better approximation for long 
vectors than for short ones 
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Chime  

 The most important source of overhead ignored by the chime 
model is vector start-up time 

 Start-up time  is determined by the pipelining latency of vector 
functional unit 

 Assuming the same pipeline depths as Cray-1 
 Floating-point add => 6 clock cycles 

 Floating-point multiply => 7 clock cycles 

 Floating-point divide => 20 clock cycles 

 Vector load => 12 clock cycles 
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Optimizations 

 

 Multiple Lanes: > 1 element per clock cycle 

 Vector Length Registers: Non-64 wide vectors 

 Vector Mask Registers: IF statements in vector code 

 Memory Banks: Memory system optimizations to support 
vector processors 

 Stride: Multiple dimensional matrices 

 Scatter-Gather: Sparse matrices 

 Programming Vector Architectures: Program structures 
affecting performance 
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Multiple Lanes 
 The advantage of a vector instruction set is that it allows 

software to pass a large amount of parallel work to hardware 
using only a single short instruction  

 

 The parallel semantics of a vector instruction allow an 
implementation to execute these elemental operations using: 

 a deeply pipelined functional unit 

 an array of parallel functional units 

 a combination of parallel and pipelined functional units 
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Multiple Lanes 
 Figure illustrates how to improve vector performance by 

using parallel pipelines to execute a vector add instruction 
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Multiple Lanes 
 In the VMIPS instruction set, all vector arithmetic instructions 

only allow element N of one vector register to take part in 
operations with element N from other vector registers 

 A parallel vector unit can be build by multiple parallel lanes 
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Vector Length Registers Handling Loops Not Equal to 64 

 Real vector length n in a program is unlikely to match VMIPS 
vector length (which is 64) 

 Vector length is not known at compile time 

 The solution is to create a vector-length register (VLR): 

 controls the length of any vector operation, including a vector load 
or store.  

 but the value in the VLR cannot be greater than the length of the 
vector registers 

 Then we use also the maximum vector length (MVL):  

 determines the number of data elements in a vector of an 
architecture 
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Vector Length Registers Handling Loops Not Equal to 64 

 If the value of n is greater than the MVL, a technique called 
strip mining is used: 

 Generation of code such that each vector operation is done for a size 
less than or equal to the MVL:  

 one loop that handles any number of iterations that is a multiple of 
the MVL  

 another loop that handles any remaining iterations and must be less 
than the MVL 

 In practice, compilers usually create a single strip-mined loop 
that is parameterized to handle both portions by changing the 
length. 

2014/2015 21 Advanced and Parallel Architectures 



Vector Length Registers Handling Loops Not Equal to 64 

 For example, consider the code for DAXPY: 
for (i=0; i <n; i=i+1) 

Y[i] = a ∗ X[i] + Y[i]; 

 the strip-mined version of the DAXPY loop in C: 
 low = 0; 

VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

 low = low + VL; /*start of next vector*/ 

 VL = MVL; /*reset the length to maximum vector length*/ 

} 

 The length of the first segment is (n % MVL), and all subsequent 
segments are of length MVL 
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Vector Mask Registers IF Statements in Vector Loops 

 The presence of conditionals (IF statements) inside loops 
introduce control dependencies into the loop 

 Consider: 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

   X[i] = X[i] – Y[i]; 

 

 This loop cannot normally be vectorized because of the 
conditional execution of the body 

 If the inner loop could be run for the iterations for which 
X[i]≠0, then the subtraction could be vectorized 
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Vector Mask Registers IF Statements in Vector Loops 

 The solution is vector-mask control 

 Mask registers provide conditional execution of vector instruction 

 When the vector-mask register is enabled, any vector instructions 
operate only on the vector elements whose corresponding entries 
in the vector-mask register are 1 

 Use vector mask register to “disable” elements (if conversion): 
 LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 GFLOPS rate decreases! 
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Memory Banks Bandwidth for Vector Load/Store Units 

 Memory system must be designed to support high bandwidth 
for vector loads and stores 

 

 Spreading accesses across multiple independent memory 
banks usually delivers the desired rate 

 Control bank addresses independently 

 Load or store non sequential words 

 Support multiple vector processors sharing the same memory 
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Stride Handling Multidimensional Arrays in Vector Architectures 

 The position in memory of adjacent elements in a vector may 
not be sequential 

 Consider: 

 for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 

   A[i][j] = 0.0; 

   for (k = 0; k < 100; k=k+1) 

   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

  } 

 Must vectorize multiplication of rows of B with columns of D 

 An array in memory is linearized in either row-major (as in C) or 
column-major (as in Fortran) order, then either the elements in 
the row or in the column are not adjacent in memory 
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Stride Handling Multidimensional Arrays in Vector Architectures 

 For vector processors, the technique to fetch elements of a 
vector that are not adjacent in memory exploits the Stride 

 The distance separating elements to be gathered into a single register  

 In our example, matrix D has a stride of 100 double words (800 bytes), 
and matrix B has a stride of 1 double word (8 bytes). For column-major 
order, the strides would be reversed.  

 A vector processor can handle strides greater than one, called 
non-unit strides, using only vector load and vector store 
operations with stride capability.  

 This ability to access nonsequential memory locations and to 
reshape them into a dense structure is one of the major 
advantages of a vector processor. 
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Stride Handling Multidimensional Arrays in Vector Architectures 

 Example: 

 8 memory banks with a bank busy time of 6 cycles and a total 
memory latency of 12 cycles. How long will it take to complete 
a 64-element vector load with a stride of 1? With a stride of 
32? 

 Answer: 

 Stride of 1: number of banks is greater than the bank busy time, so it 
takes  

 12+64 = 76 clock cycles  1.2 cycle per element 

 Stride of 32: the worst case scenario happens when the stride value is a 
multiple of the number of banks, which this is! Every access to memory 
will collide with the previous one! Thus, the total time will be: 

 12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element! 
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Scatter-Gather Handling Sparse Matrices 

 It is important to have techniques to allow programs with 
sparse matrices to execute in vector mode  

 In a sparse matrix, the elements of a vector are usually stored 
in some compacted form and then accessed indirectly 

 Consider sparse vectors A and C, and vector indices K and M, 
where A and C have the same number (n) of non-zeros: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]];    

 The primary mechanism for supporting sparse matrices is 
gather-scatter operations using index vectors  

 Such operations support moving between a compressed 
representation and normal representation of a sparse matrix 
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Scatter-Gather Handling Sparse Matrices 

 A gather operation takes an index vector and fetches the 
vector whose elements are at the addresses given by adding a 
base address to the offsets given in the index vector.  

The result is a dense vector in a vector register 

 

 After these elements are operated on in dense form, the 
sparse vector can be stored in expanded form by a scatter 
store, using the same index vector.  

 

 Hardware support for such operations is called gather-scatter  
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Scatter-Gather Handling Sparse Matrices 

 This technique allows code with sparse matrices to run in 
vector mode  

 Ra, Rc, Rk and Rm the starting addresses of vectors 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm   ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 
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 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 
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Level of vectorization 
among the Perfect Club 
benchmarks executed on 
the Cray Y-MP [Vajapeyam 
1991].  
The first column shows the 
vectorization level 
obtained with the compiler 
without hints 
The second column shows 
the results after the codes 
have been improved with 
hints from a team of Cray 
Research programmers. 
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