
Advanced Parallel Architecture

Annalisa Massini - 2014/2015

Vector architecture

2014/2015 2 Advanced and Parallel Architectures

Computer Architecture - A Quantitative Approach, Fifth Edition

Hennessy Patterson

 Chapter 4 - Data-Level Parallelism in Vector, SIMD, and GPU Architectures

 Section 4.2 - Vector Architecture

2014/2015 3 Advanced and Parallel Architectures

Cray 1

2014/2015 Advanced and Parallel Architectures 4

Vector Architectures

 Basic idea:
 Read sets of data elements scattered about memory

 Place them into vector registers

 Operate on those registers

 Disperse the results back into memory

 Registers are controlled by compiler
 Used to hide memory latency

 Leverage memory bandwidth

 Since vector loads and stores are deeply pipelined, the
program pays the long memory latency only once per vector
load or store versus once per element, thus amortizing the
latency

2014/2015 5 Advanced and Parallel Architectures

VMIPS

 Example architecture: VMIPS
 Loosely based on Cray-1

 Vector registers
 Each register holds a 64-element, 64 bits/element vector

 Register file has 16 read ports and 8 write ports

 Vector functional units
 Fully pipelined

 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined

 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers

 32 floating-point registers

2014/2015 6 Advanced and Parallel Architectures

Basic structure of VMIPS vector
architecture :
• scalar architecture just like MIPS
• eight 64-element vector
• all the functional units are vector
functional units
• vector units for logical and integer
operations
• the vector and scalar registers have a
significant number of read and write
ports to allow multiple simultaneous
vector operations
• a set of crossbar switches (thick gray
lines) connects these ports to the
inputs and outputs of the vector
functional units

2014/2015 7 Advanced and Parallel Architectures

VMIPS

2014/2015 Advanced and Parallel Architectures 8

VMIPS Instructions

DAXPY in MIPS Instructions
Example: DAXPY (double precision a*X+Y)

 L.D F0,a ; load scalar a

 DADDIU R4,Rx,#512 ; last address to load

Loop: L.D F2,0(Rx) ; load X[i]

 MUL.D F2,F2,F0 ; a x X[i]

 L.D F4,0(Ry) ; load Y[i]

 ADD.D F4,F2,F2 ; a x X[i] + Y[i]

 S.D F4,9(Ry) ; store into Y[i]

 DADDIU Rx,Rx,#8 ; increment index to X

 DADDIU Ry,Ry,#8 ; increment index to Y

 SUBBU R20,R4,Rx ; compute bound

 BNEZ R20,Loop ; check if done

 Requires almost 600 MIPS ops

2014/2015 9 Advanced and Parallel Architectures

VMIPS Instructions

 ADDVV.D: add two vectors

 ADDVS.D: add vector to a scalar

 LV/SV: vector load and vector store from address

 Example: DAXPY (double precision a*X+Y)

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV V4,V2,V3 ; add

SV Ry,V4 ; store the result

 Requires 6 instructions

2014/2015 10 Advanced and Parallel Architectures

Vector Execution Time

 Execution time depends on three factors:
 Length of operand vectors

 Structural hazards

 Data dependencies

 We can compute the time for a single vector instruction
given

 the vector length and

 the initiation rate, rate at which a vector unit consumes new
operands and produces new results

 Assuming initiation rate of one element per clock cycle
for individual operations we obtain that the execution
time is approximately the vector length

2014/2015 11 Advanced and Parallel Architectures

Convoy

 To discuss vector execution and vector performance, we use
the notion of Convoy
 Set of vector instructions that could potentially execute together

 We can estimate performance of a section of code by counting
the number of convoys

 the instructions in a convoy must not contain any structural
hazards;

 if such hazards were present, the instructions would need to be
serialized and initiated in different Convoys

 to simplify, we assume that a convoy of instructions must
complete execution before any other instructions (scalar or
vector) can begin execution

2014/2015 12 Advanced and Parallel Architectures

Chaining

 Sequences with read-after-write dependency hazards can
be in the same convey via chaining

 Chaining
 Allows a vector operation to start as soon as the individual

elements of its vector source operand become available

 The results from the first functional unit in the chain are
“forwarded” to the second functional unit

 Early implementations of chaining worked just like forwarding
in scalar pipelining

 Recent implementations use flexible chaining, which allows a
vector instruction to chain to any other active vector
instruction, assuming we don’t generate a structural hazard

2014/2015 13 Advanced and Parallel Architectures

Chimes

 To turn convoys into execution time we need a timing
metric to estimate the time for a convoy: Chime

 Unit of time to execute one convoy

 A vector sequence that consists of m convoys executes in m
chimes

 For vector length of n, requires approximately m x n clock
cycles

 The chime approximation ignores some processor-specific
overheads, many of which are dependent on vector length.

 Measuring time in chimes is a better approximation for long
vectors than for short ones

2014/2015 14 Advanced and Parallel Architectures

Chime

 The most important source of overhead ignored by the chime
model is vector start-up time

 Start-up time is determined by the pipelining latency of vector
functional unit

 Assuming the same pipeline depths as Cray-1
 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

2014/2015 15 Advanced and Parallel Architectures

Optimizations

 Multiple Lanes: > 1 element per clock cycle

 Vector Length Registers: Non-64 wide vectors

 Vector Mask Registers: IF statements in vector code

 Memory Banks: Memory system optimizations to support
vector processors

 Stride: Multiple dimensional matrices

 Scatter-Gather: Sparse matrices

 Programming Vector Architectures: Program structures
affecting performance

2014/2015 16 Advanced and Parallel Architectures

Multiple Lanes
 The advantage of a vector instruction set is that it allows

software to pass a large amount of parallel work to hardware
using only a single short instruction

 The parallel semantics of a vector instruction allow an
implementation to execute these elemental operations using:

 a deeply pipelined functional unit

 an array of parallel functional units

 a combination of parallel and pipelined functional units

2014/2015 17 Advanced and Parallel Architectures

Multiple Lanes
 Figure illustrates how to improve vector performance by

using parallel pipelines to execute a vector add instruction

2014/2015 18 Advanced and Parallel Architectures

Multiple Lanes
 In the VMIPS instruction set, all vector arithmetic instructions

only allow element N of one vector register to take part in
operations with element N from other vector registers

 A parallel vector unit can be build by multiple parallel lanes

2014/2015 19 Advanced and Parallel Architectures

Vector Length Registers Handling Loops Not Equal to 64

 Real vector length n in a program is unlikely to match VMIPS
vector length (which is 64)

 Vector length is not known at compile time

 The solution is to create a vector-length register (VLR):

 controls the length of any vector operation, including a vector load
or store.

 but the value in the VLR cannot be greater than the length of the
vector registers

 Then we use also the maximum vector length (MVL):

 determines the number of data elements in a vector of an
architecture

2014/2015 20 Advanced and Parallel Architectures

Vector Length Registers Handling Loops Not Equal to 64

 If the value of n is greater than the MVL, a technique called
strip mining is used:

 Generation of code such that each vector operation is done for a size
less than or equal to the MVL:

 one loop that handles any number of iterations that is a multiple of
the MVL

 another loop that handles any remaining iterations and must be less
than the MVL

 In practice, compilers usually create a single strip-mined loop
that is parameterized to handle both portions by changing the
length.

2014/2015 21 Advanced and Parallel Architectures

Vector Length Registers Handling Loops Not Equal to 64

 For example, consider the code for DAXPY:
for (i=0; i <n; i=i+1)

Y[i] = a ∗ X[i] + Y[i];

 the strip-mined version of the DAXPY loop in C:
 low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

 Y[i] = a * X[i] + Y[i] ; /*main operation*/

 low = low + VL; /*start of next vector*/

 VL = MVL; /*reset the length to maximum vector length*/

}

 The length of the first segment is (n % MVL), and all subsequent
segments are of length MVL
 2014/2015 22 Advanced and Parallel Architectures

Vector Mask Registers IF Statements in Vector Loops

 The presence of conditionals (IF statements) inside loops
introduce control dependencies into the loop

 Consider:

 for (i = 0; i < 64; i=i+1)

 if (X[i] != 0)

 X[i] = X[i] – Y[i];

 This loop cannot normally be vectorized because of the
conditional execution of the body

 If the inner loop could be run for the iterations for which
X[i]≠0, then the subtraction could be vectorized

2014/2015 23 Advanced and Parallel Architectures

Vector Mask Registers IF Statements in Vector Loops

 The solution is vector-mask control

 Mask registers provide conditional execution of vector instruction

 When the vector-mask register is enabled, any vector instructions
operate only on the vector elements whose corresponding entries
in the vector-mask register are 1

 Use vector mask register to “disable” elements (if conversion):
 LV V1,Rx ;load vector X into V1

 LV V2,Ry ;load vector Y

 L.D F0,#0 ;load FP zero into F0

 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

 SUBVV.D V1,V1,V2 ;subtract under vector mask

 SV Rx,V1 ;store the result in X

 GFLOPS rate decreases!

2014/2015 24 Advanced and Parallel Architectures

Memory Banks Bandwidth for Vector Load/Store Units

 Memory system must be designed to support high bandwidth
for vector loads and stores

 Spreading accesses across multiple independent memory
banks usually delivers the desired rate

 Control bank addresses independently

 Load or store non sequential words

 Support multiple vector processors sharing the same memory

2014/2015 25 Advanced and Parallel Architectures

Stride Handling Multidimensional Arrays in Vector Architectures

 The position in memory of adjacent elements in a vector may
not be sequential

 Consider:

 for (i = 0; i < 100; i=i+1)

 for (j = 0; j < 100; j=j+1) {

 A[i][j] = 0.0;

 for (k = 0; k < 100; k=k+1)

 A[i][j] = A[i][j] + B[i][k] * D[k][j];

 }

 Must vectorize multiplication of rows of B with columns of D

 An array in memory is linearized in either row-major (as in C) or
column-major (as in Fortran) order, then either the elements in
the row or in the column are not adjacent in memory

2014/2015 26 Advanced and Parallel Architectures

Stride Handling Multidimensional Arrays in Vector Architectures

 For vector processors, the technique to fetch elements of a
vector that are not adjacent in memory exploits the Stride

 The distance separating elements to be gathered into a single register

 In our example, matrix D has a stride of 100 double words (800 bytes),
and matrix B has a stride of 1 double word (8 bytes). For column-major
order, the strides would be reversed.

 A vector processor can handle strides greater than one, called
non-unit strides, using only vector load and vector store
operations with stride capability.

 This ability to access nonsequential memory locations and to
reshape them into a dense structure is one of the major
advantages of a vector processor.

2014/2015 27 Advanced and Parallel Architectures

Stride Handling Multidimensional Arrays in Vector Architectures

 Example:

 8 memory banks with a bank busy time of 6 cycles and a total
memory latency of 12 cycles. How long will it take to complete
a 64-element vector load with a stride of 1? With a stride of
32?

 Answer:

 Stride of 1: number of banks is greater than the bank busy time, so it
takes

 12+64 = 76 clock cycles 1.2 cycle per element

 Stride of 32: the worst case scenario happens when the stride value is a
multiple of the number of banks, which this is! Every access to memory
will collide with the previous one! Thus, the total time will be:

 12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per element!

2014/2015 28 Advanced and Parallel Architectures

Scatter-Gather Handling Sparse Matrices

 It is important to have techniques to allow programs with
sparse matrices to execute in vector mode

 In a sparse matrix, the elements of a vector are usually stored
in some compacted form and then accessed indirectly

 Consider sparse vectors A and C, and vector indices K and M,
where A and C have the same number (n) of non-zeros:

 for (i = 0; i < n; i=i+1)

 A[K[i]] = A[K[i]] + C[M[i]];

 The primary mechanism for supporting sparse matrices is
gather-scatter operations using index vectors

 Such operations support moving between a compressed
representation and normal representation of a sparse matrix

2014/2015 29 Advanced and Parallel Architectures

Scatter-Gather Handling Sparse Matrices

 A gather operation takes an index vector and fetches the
vector whose elements are at the addresses given by adding a
base address to the offsets given in the index vector.

The result is a dense vector in a vector register

 After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter
store, using the same index vector.

 Hardware support for such operations is called gather-scatter

2014/2015 30 Advanced and Parallel Architectures

Scatter-Gather Handling Sparse Matrices

 This technique allows code with sparse matrices to run in
vector mode

 Ra, Rc, Rk and Rm the starting addresses of vectors

 LV Vk, Rk ;load K

 LVI Va, (Ra+Vk) ;load A[K[]]

 LV Vm, Rm ;load M

 LVI Vc, (Rc+Vm) ;load C[M[]]

 ADDVV.D Va, Va, Vc ;add them

 SVI (Ra+Vk), Va ;store A[K[]]

2014/2015 31 Advanced and Parallel Architectures

 Compilers can provide feedback to programmers

 Programmers can provide hints to compiler

2014/2015 32 Advanced and Parallel Architectures

Level of vectorization
among the Perfect Club
benchmarks executed on
the Cray Y-MP [Vajapeyam
1991].
The first column shows the
vectorization level
obtained with the compiler
without hints
The second column shows
the results after the codes
have been improved with
hints from a team of Cray
Research programmers.

Programming Vector Architectures

