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CUDA Programming Model 

 The GPU is viewed as a compute device that: 
 Is a coprocessor to the CPU (host) 

 Has its own DRAM (device memory) 

 Runs many threads in parallel 

 Data-parallel portions of an application are executed on 
the device as kernels which run in parallel on many 
threads 

 Differences between GPU and CPU threads  
 GPU threads are extremely lightweight 

 Very little creation overhead 

 GPU needs 1000s of threads for full efficiency 

 Multi-core CPU needs only a few 
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CPUs: Latency Oriented Design  

 Large caches 

 Convert long latency memory 
accesses to short latency cache 
accesses 

 Sophisticated control 

 Branch prediction for reduced 
branch latency 

 Data forwarding for reduced 
data latency 

 Powerful ALU 

 Reduced operation latency 
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GPUs: Throughput Oriented Design 

 Small caches 

 To boost memory throughput 

 Simple control 

 No branch prediction 

 No data forwarding 

 Energy efficient ALUs 

 Many, long latency but heavily 
pipelined for high throughput 

 Require massive number of 
threads to tolerate latencies 

DRAM 

GPU 
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GPU Architecture   

 A typical CUDA-capable GPU can be organized into 

 an array of highly threaded streaming multiprocessors (SMs)  

 in Figure, two SMs form a building block; but, the number of 
SMs in a building block can vary from one generation of CUDA 
GPUs to another generation 
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GPU Architecture  

 Each SM has a number of streaming processors (SPs) that 
share control logic and instruction cache 

 Each GPU currently comes with up to 4 gigabytes of 
graphics double data rate (GDDR) DRAM, referred to as 
global memory 
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GPU Architecture  

 The parallel G80 chip has 128 SPs (16 SMs, 8 SPs) 

 Each SP has a multiply–add (MAD) unit and an additional 
multiply unit. 

 With 128 SPs, the G80 produces a total of over 500 gigaflops 

 The GT200 (240 SPs) exceeds 1 teraflops and the GTX680 1,5 
teraflops 

Advanced and Parallel Architectures 9 2014/2015 



Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 

GPU Architecture  

 The G80 chip supports up to 768 threads per SM, which 
sums up to about 12,000 threads for this chip.  

 The GT200 supports 1024 threads per SM and up to 
about 30,000 threads 
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CUDA Program Structure 

 The structure of a CUDA program reflects the computing 
system consisting of  

 a host, which is a traditional central processing unit (CPU)  

 one or more devices (GPUs) 

 

 A CUDA program is a unified source code encompassing 
both host and device code 

 The NVIDIA C compiler - nvcc - separates the two during 
the compilation process 
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CUDA Program Structure 

 The host code is: 

 straight ANSI C code  

 it is further compiled with the host’s standard C compilers 
and runs as an ordinary CPU process 

 The device code is: 

 written using ANSI C extended with keywords for labeling 
data-parallel functions, called kernels, and their 
associated data structures 

 The device code is typically further compiled by the nvcc 
and executed on a GPU device 
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Integrated C programs with CUDA extensions 

NVCC Compiler 

Host C Compiler/ Linker 

Host Code Device Code (PTX) 

Device Just-in-Time Compiler 

Heterogeneous Computing Platform with 
CPUs, GPUs 

Compiling A CUDA Program 
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CUDA Execution Model 
 The execution starts with host (CPU) execution 

 When a kernel function is launched, the execution is moved to a 
device (GPU), where a large number of threads are generated to 
take advantage of abundant data parallelism 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

KernelB<<< nBlk, nTid >>>(args); 
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CUDA Execution Model 
 All the threads that are generated by a kernel during an 

invocation are collectively called a grid 

 Figure shows the execution of two grids of threads 

 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

KernelB<<< nBlk, nTid >>>(args); 
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CUDA Execution Model 
 When all threads of a kernel complete their execution: 

 the corresponding grid terminates 

 the execution continues on the host until another kernel is 
invoked 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

KernelB<<< nBlk, nTid >>>(args); 
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Vector Addition – Traditional C Code 
// Compute vector sum C = A+B 

void vecAdd(float* A, float* B, float* C, int n) 

{ 

  for (i = 0, i < n, i++) 

    C[i] = A[i] + B[i]; 

} 

 

int main() 

{ 

    // Memory allocation for A_h, B_h, and C_h 

   // I/O to read A_h and B_h, N elements 

   … 

    vecAdd(A_h, B_h, C_h, N); 

} 
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void vecAdd(float* h_A, float* h_B, float* h_C, int 

n)‏ 

{ 

   int size = n* sizeof(float);  

   float* d_A, d_B, d_C; 

   … 

1. // Allocate device memory for A, B, and C 

    // copy A and B to device memory  

     

2. // Kernel launch code – to have the device 

    // to perform the actual vector addition 

 

3. // copy C from the device memory 

    // Free device vectors 

} 

 

Part 1 

CPU 

Host Memory 

GPU 
Part 2 

Device Memory 

Part 3 

Vector Addition – Kernel  
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Device Memory and Data Transfer 

 The host and devices have separate memory spaces  

 To execute a kernel on a device 

 the programmer needs to allocate memory on the device  

 transfer data from the host memory to the allocated device 
memory  

 this corresponds to Part 1 of Figure  

 After device execution 

 the programmer needs to transfer result data from the device 
memory back to the host memory 

 free up the device memory 

 this corresponds to Part 3 of Figure 
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Device Memory and Data Transfer 

 The CUDA memory model is supported by API functions 
that help programmers to manage data in memories 

 The function cudaMalloc(): 

 called from the host code to allocate object in the device 
global memory 

 Two parameters: 

 address of a pointer variable to the allocated object after allocation 

 size of the allocated object  in terms of bytes 

 The function cudaFree() : 

 Frees object from device global memory 

  Pointer to freed object 

 The function cudaMemcpy() for memory data transfer 
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CUDA Device Memory Management API 

 cudaMalloc() 

 Allocates object in the device 
global memory 

 Two parameters 

 Address of a pointer to the 
allocated object 

 Size of of allocated object in terms 
of bytes 

 cudaFree() 

 Frees object from device global 
memory 

 Pointer to freed object 
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Host 

Host-Device Data Transfer API functions 

 cudaMemcpy() 

 memory data transfer 

 requires four parameters 

 Pointer to destination  

 Pointer to source 

 Number of bytes copied 

 Type/Direction of transfer 

 

 Transfer to device is asynchronous 
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void vecAdd(float* h_A, float* h_B, float* h_C, int n) 

{ 

   int size = n * sizeof(float);  

    float* d_A, d_B, d_C; 
 

1. // Transfer A and B to device memory  

    cudaMalloc((void **) &d_A, size); 

    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); 

    cudaMalloc((void **) &d_B, size); 

    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); 
 

   // Allocate device memory for 

     cudaMalloc((void **) &d_C, size); 
 

2. // Kernel invocation code – to be shown later 

     … 

3. // Transfer C from device to host 

     cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

   // Free device memory for A, B, C 

     cudaFree(d_A); cudaFree(d_B); cudaFree (d_C); 

} 

Vector Addition – Traditional C Code 
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Arrays of Parallel Threads 

 A kernel function specifies the code to be executed by all 
threads during a parallel phase 

 All of these threads execute the same code 

 A CUDA kernel is executed by a grid (array) of threads  

 All threads in a grid run the same kernel code (SPMD)‏  

 Each thread has an index that it uses to compute memory 
addresses and make control decisions 
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i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
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Thread Blocks: Scalable Cooperation 

 Thread array is divided into multiple blocks 

 Threads within a block cooperate via shared memory, 
atomic operations and barrier synchronization 

 Threads in different blocks cannot cooperate 

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 

0 1 2 254 255 

Thread Block 0 

… 

1 2 254 255 

Thread Block 1 

0 

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 

1 2 254 255 

Thread Block N-1 

0 

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 

… … … 
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Arrays of Parallel Threads 

 When a kernel is invoked, it is executed as grid of parallel 
threads 

 Each CUDA thread grid typically is comprised of 
thousands to millions of lightweight GPU threads per 
kernel invocation  

 Creating enough threads to fully utilize the hardware 
often requires a large amount of data parallelism 
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Figure 3.2. An Example of CUDA Thread Organization.
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blockIdx and threadIdx 

 Threads in a grid are organized into 
a two-level hierarchy 

 top level, each grid consists of one or 
more thread blocks 

 All blocks in a grid have the same 
number of threads organized in the 
same manner 

 Each grid is organized as a as a three-
dimensional array of blocks 

 Each block has a unique three 
dimensional coordinate given by the 
CUDA specific keywords blockIdx.x, 
blockIdx.y and blockIdx.z  
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blockIdx and threadIdx 

 Threads in a grid are organized into 
a two-level hierarchy 

 Each thread block is organized as a 
three-dimensional array of threads 
with a total size of up to 512 threads  

 The coordinates of threads in a block 
are uniquely defined by three thread 
indices: threadIdx.x, threadIdx.y, 
and threadIdx.z 

 Not all applications will use all three 
dimensions of a thread block 

 In Figure 3.13, each thread block is 
organized 
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blockIdx and threadIdx 

 Threads in a grid are organized into 
a two-level hierarchy 

 In Figure  

 each thread block is organized into a 
4x2x2 three-dimensional array of 
threads 

 this gives Grid 1 a total of 4x16 = 64 
threads 

 

 Each thread uses indices to decide 
what data to work on 
 blockIdx: 1D, 2D, or 3D (CUDA 4.0) 

 threadIdx: 1D, 2D, or 3D  
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CUDA Thread Organization 

 When a thread executes the kernel function, references to 
the blockIdx and threadIdx variables return the 
coordinates of the thread 

 Additional built-in variables, gridDim and blockDim, provide 
the dimension of the grid and the dimension of each block 

 
 threadID = blockIdx.x * blockDim.x + threadIdx 

identifies the part of the input data to read from and the 
part of the output data structure to write to  

 Example Thread 3 of Block 0 has a threadID value of 0*M + 3 = 3 

 Example Thread 3 of Block 5 has a threadID value of 5*M + 3 
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CUDA threads, blocks and grids 
 Nvidia use the Compute Capability specification to encode what 

each generation of GPU chips is capable of 

 The Compute Capability (CC) of a GPU can be discovered by 
running the deviceQuery utility 
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CUDA Thread Organization 

 The exact organization of a grid is determined by the 
execution configuration provided at kernel launch 

 The first parameter specifies the dimensions of the grid as # blocks 

 The second specifies the dimensions of each block as # threads 

 Each such parameter is a dim3 type, a C struct with three unsigned 
integer fields: x, y, and z 

 Example 
dim3 dimGrid(128, 1, 1); 

dim3 dimBlock(32, 1, 1); 

vecAddKernel<<<dimGrid, dimBlock>>>(. . .); 

oppure 
dim3 cat(128, 1, 1); 

dim3 dog(32, 1, 1); 

KernelFunction<<<cat, dog>>>(. . .);  

Advanced and Parallel Architectures 32 2014/2015 



Execution Configuration Examples 

Assuming we have 

  dim3 b(3,3,3); 

  dim3 g(20,100); 

Different grid-block combination are possible 

 foo<<<g,b>>>();    // Run a 20x100 grid made of 3x3x3 blocks 

 foo<<<10,b>>>();   // Run a 10-block grid, each block made by 3x3x3   
         threads 

 foo<<<g,256>>>();  // Run a 20x100 grid, made of 256 threads 

 foo<<<g,2048>>>(); // An invalid example: maximum block size is 1024  
         threads even for compute capability 5.x 

 foo<<<5,g>>>();    // Another invalid example, that specifies a block size 
         of 20x100=2000 threads 

 foo<<<10,256>>>;   // simplified configuration for a 1D grid of 1D blocks 
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Synchronization  

 CUDA allows threads in the same block to coordinate 
their activities using a barrier synchronization function, 
__syncthreads() 

 the thread that executes the function call will be held at the 
calling location until every thread in the block reaches the 
location 

 A __syncthreads() statement must be executed by all 
threads in a block of the kernel before any moves on to 
the next phase 

Advanced and Parallel Architectures 34 2014/2015 



Thread and Block Assignment 

 Once a kernel is launched, the CUDA runtime system 
generates the corresponding grid of threads  

 threads are assigned to execution resources on a block-by-
block basis 

 The execution resources are organized into streaming 
multiprocessors (SMs) 

 Each device has a limit on 

 the number of block that  

can be assigned to each SM 
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Thread and Block Assignment 

 When an insufficient amount of any one or more types of 
resources needed for the simultaneous execution of 
blocks, the CUDA runtime automatically reduces the 
number of blocks assigned to each SM  

 The runtime system maintains a list of blocks that need to 
execute and assigns new blocks to SMs as they complete 
the execution of blocks previously assigned to them 
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Thread Scheduling 

 Once a block is assigned to a streaming multiprocessor, it 
is further divided into 32-thread units called warps 

 The warp is the unit of thread scheduling in SMs 

 Each warp consists of 32 threads of consecutive threadIdx 
values:  

 threads 0 through 31 form the first warp 

 threads 32 through 63 the second warp, and so on 

 We can calculate the number of warps that reside in an 
SM for a given block size and a given number of blocks 
assigned to each SM 
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Thread Scheduling 

 Each Block is executed as 
32-thread Warps 
– Warps are scheduling units in SM 

 Example If 3 blocks are 
assigned to an SM and each 
block has 256 threads, how 
many warps are there in an 
SM? 
 3 blocks, each block 256 threads  

 each block has 256/32 = 8 warps 

 having 3 blocks in each SM, we 
have 8 x 3 = 24 warps in each SM 
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Thread Scheduling 

 Why do we need to have so many warps in an SM if there are 
only 8 SPs in an SM?  

 The answer is for efficiently executing long-latency operations such 
as global memory accesses 

 When an instruction executed by the threads in a warp needs to wait 
for the result of a previously initiated long-latency operation, the 
warp is not selected for execution 

 Another resident warp (that is no waiting for results) is selected for 
execution 

 If more than one warp is ready for execution, a priority mechanism is 
used to select one for execution  

 This mechanism of filling the latency of expensive operations with 
work from other threads is often referred to as latency hiding 

Advanced and Parallel Architectures 39 2014/2015 



Thread Scheduling 

 Note that warp scheduling is also used for tolerating other 
types of long latency operations such as pipelined floating-
point arithmetic and branch instructions 

 With enough warps around 

 the hardware will likely find a warp to execute at any point in time 

 full use of the execution hardware in spite of long-latency operations 

 The selection of ready warps for execution 

  does not introduce any idle time into the execution timeline 

 zero-overhead thread scheduling 

 With warp scheduling, the long waiting time of warp 
instructions is hidden by executing instructions from other 
warps 

Advanced and Parallel Architectures 40 2014/2015 



SM Warp Scheduling 
 SM hardware implements zero-overhead 

Warp scheduling 
 Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution 

 Eligible Warps are selected for execution 
on a prioritized scheduling policy 

 All threads in a Warp execute the same 
instruction when selected 

 4 clock cycles needed to dispatch the 
same instruction for all threads in a Warp 
in G80 
 If one global memory access is needed for 

every 4 instructions 
 A minimum of 13 Warps are needed to 

fully tolerate 200-cycle memory latency 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 

CS6963 
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Thread Scheduling 

 List of GPU chips and their SM capabilty 
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Exercise  

Simple exercise (register and shared memory not considered) 

 Assume a CUDA device allowing 8  blocks, 1024 threads per 
SM and 512 thread in each block 

 For matrix multiplication, should we use 8x8, 16x16, or 32x32 
thread blocks?  

 Analyze the pros and cons of each choice: 

 If we use 8x8 blocks, each block would have only 64 threads, 
and we will need 1024/64 = 12 blocks to fully occupy an SM 

 We are limited to 8 blocks in each SM, we will end up with only 
64 x 8 = 512 threads in each SM 

 Then the SM execution resources will likely be underutilized 
because there will be fewer warps to schedule around long-
latency operations 
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Exercise  

Simple exercise (register and shared memory not considered) 

 Assume a CUDA device allowing 8  blocks, 1024 threads per SM 
and 512 thread in each block 

 For matrix multiplication, should we use 8x8, 16x16, or 32x32 
thread blocks?  

 The 16x16 blocks give 256 threads per block.  

 This means that each SM can take 1024/256 = 4 blocks.  

 This is within the 8-block limitation.  

 Good configuration:   

 full thread capacity in each SM and the  

 maximal number of warps for scheduling around the long-latency oper.  

 The 32x32 blocks exceed the limitation of up to 512 threads per 
block 
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Programmer View of  CUDA Memories 

 At the bottom of the figure, 
we see global memory and 
constant memory 

 These types of memory can 
be written (W) and read (R) 
by the host by calling API 
functions 

 The constant memory supports 
short-latency, high-bandwidth, 
read-only access by the device 
when all threads simultaneously 
access the same location 
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Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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Programmer View of  CUDA Memories 
Device code can: 
 R/W per-thread registers 

 R/W per-thread local memory 

 R/W per-block shared memory 

 R/W per-grid global memory 

 Read-only per-grid constant 
memory 

 

 

Host code can: 

 Transfer data to/from per-grid 
global and constant memories 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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Programmer View of  CUDA Memories 

 Registers and shared memory 
are on-chip memories 

 Variables on these memories 
can be accessed at very high 
speed in a highly parallel 
manner 

 Registers are allocated to 
individual threads and each 
thread can only access its own 
registers 

 A kernel function uses registers 
to hold frequently accessed 
variables private to each thread 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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Programmer View of  CUDA Memories 

 Registers and shared 
memory are on-chip 
memories 

 Shared memory is allocated to 
thread blocks;  

 all threads in a block can 
access variables in the shared 
memory locations allocated to 
the block 

 Shared memory is used by 
threads to cooperate by sharing 
their input data and the 
intermediate results 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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Variables 

 Table presents the CUDA syntax for declaring program 
variables into the various types of device memory 

 Each declaration gives to CUDA variable:  

 A scope identifies the range of threads that can access the 
variable: single thread only, all threads of a block, or all threads 
of all grids 

 A lifetime specifies the portion of the program’s execution 
duration when the variable is available for use: either within a 
kernel’s invocation or throughout the entire application 
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Variable declaration Memory Scope Lifetime 

Automatic Variables register thread kernel 

__device__ __shared__   int SharedVar; shared block kernel 

__device__              int GlobalVar; global grid application 

__device__ __constant__ int ConstantVar; constant grid application 



A motivating example 

 Lets assume that: 

 We have a kernel that requires 48 registers per thread 

 Target platform is a GTX 580 card (CC 2.0, 16SMs, 32k registers/SM) 

 Execution configuration is a grid of 4x5x3 blocks, each 100 threads 

 Each block requires 100*48=4800 registers   

 The grid is made of 4*5*3 = 60 blocks that need to be 
distributed to the 16 SMs of the card 
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A motivating example 

 There will be 12 SMs that will receive 4 blocks and 4 SMs that 
will receive 3 blocks  Inefficient  

 Additionally, each of the 100-thread blocks would be split into 

 

warps 

  The first three warps would have 32 threads and the last 
would have 4 threads !  

 So during the execution of the last warp of each block, of the 
SPs will be idle 
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Matrix multiplication 

 Each element of the product matrix P is 
generated by performing a dot product 
between a row of input matrix M and a 
column of input matrix N: P=MxN 

 The dot product operations for computing 
different matrix P elements can be 
simultaneously performed 

 None of these dot products will affect the 
results of each other M 

N 

P 
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Matrix multiplication 

 For large matrices, the number of dot products 
can be very large 

 Example, a 1000 x 1000 matrix multiplication 
has 1,000,000 independent dot products, 
each involving 1000 multiply and 1000 
accumulate arithmetic operations 

 Matrix multiplication of large dimensions can 
have very large amount of data parallelism 
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Matrix multiplication 

 the entire matrix multiplication computation 
can be implemented as a kernel 

 Each thread is used to compute one element 
of output matrix P 

 The number of threads used by the kernel is a 
function of the matrix dimension 

 For a 1000 x 1000 matrix multiplication, the 
kernel would generate 1,000,000 threads 
when it is invoked M 

N 

P 
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Matrix multiplication 

 Assume that the matrices are square in shape, 
and the dimension of each matrix is specified 
by the parameter WIDTH 

 The main program first allocates the M, N, and 
P matrices in the host memory and then 
performs I/O to read in M and N 

 After completing the multiplication, the main 
function performs I/O to write the product 
matrix P and to free memory M 

N 

P 
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Matrix multiplication 

CPU-only matrix multiplication function 
 void MatrixMulOnHost(float* M, float* N, 

float* P, int Width)‏ 

{    

for (int i = 0; i < Width; ++i)‏ 

 for (int j = 0; j < Width; ++j) {  

    float sum = 0; 

    for (int k = 0; k < Width; ++k) { 

         float a = M[i  * width + k]; 

             float b = N[k * width + j]; 

             sum += a * b; 

          } 

          P[i * Width + j] = sum; 

      } 

} 
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Matrix multiplication 

 The index used for accessing the M matrix in the 
innermost loop is i*Width+k 

 The M matrix elements are placed into the system 
memory according to the row-major convention: 

 All elements of a row are placed into consecutive memory 
locations 

 The rows are then placed one after another 

M0,2 

M1,1 

M0,1 M0,0 

M1,0 

M0,3 

M1,2 M1,3 

M2,1 M2,0 M2,2 M2,3 

M3,1 M3,0 M3,2 M3,3 

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 M3,1 M3,0 M3,2 M3,3 

M 

Advanced and Parallel Architectures 57 2014/2015 



Matrix multiplication 

 To port the matrix multiplication function into CUDA, we can 
modify the MatrixMultiplication() function to move the bulk of 
the calculation to a CUDA device 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1.// Allocate device memory for M, N, P and 

  // load M, N to device memory  

2.// Kernel invocation code to have the device to perform 

  // the actual matrix multiplication 

3.// copy P from the device 

    // Free device matrices 
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Matrix multiplication 

 To port the matrix multiplication function into CUDA, we can 
modify the MatrixMultiplication() function to move the bulk of 
the calculation to a CUDA device 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1.// Allocate device memory for M, N, P and 

  // load M, N to device memory  

2.// Kernel invocation code to have the device to perform 

  // the actual matrix multiplication 

3.// copy P from the device 

    // Free device matrices 

     } 

Part 1  
- allocates device (GPU) 
memory to hold copies 
of the M, N, and P 
matrices, and  
- copies these matrices 
over to the device 
memory 
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Matrix multiplication 

 To port the matrix multiplication function into CUDA, we can 
modify the MatrixMultiplication() function to move the bulk of 
the calculation to a CUDA device 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1.// Allocate device memory for M, N, P and 

  // load M, N to device memory  

2.// Kernel invocation code to have the device to perform 

  // the actual matrix multiplication 

3.// copy P from the device 

    // Free device matrices 

     } 

Part 2  
- invokes a kernel that 
launches parallel 
execution of the actual 
matrix multiplication on 
the device  
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Matrix multiplication 

 To port the matrix multiplication function into CUDA, we can 
modify the MatrixMultiplication() function to move the bulk of 
the calculation to a CUDA device 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1.// Allocate device memory for M, N, P and 

  // load M, N to device memory  

2.// Kernel invocation code to have the device to perform 

  // the actual matrix multiplication 

3.// copy P from the device 

    // Free device matrices 

     } 

Part 3  
- copies the product 
matrix P from the device 
memory back to the 
host memory 
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Matrix multiplication 

Assume M, N and P are on the host and Md, Nd and Pd on device 
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1. // Allocate and Load M, N to device memory  

     cudaMalloc(&Md, size); 

     cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

     cudaMalloc(&Nd, size); 

     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

     // Allocate P on the device 

     cudaMalloc(&Pd, size); 
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Matrix multiplication 

Assume M, N and P are on the host and Md, Nd and Pd on device 
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1. // Allocate and Load M, N to device memory  

     cudaMalloc(&Md, size); 

     cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

     cudaMalloc(&Nd, size); 

     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

     // Allocate P on the device 

     cudaMalloc(&Pd, size); 

 

The two symbolic constants, 
cudaMemcpyHostToDevice 
and 
cudaMemcpyDeviceToHost 
are predefined constants of the 
CUDA programming 
environment, recognized by 
cudaMemcpy 
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Matrix multiplication 
2.   // Kernel invocation code – to be shown later 

     … 

3.    // Read P from the device 

      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

       // Free device matrices 

      cudaFree(Md);  

     cudaFree(Nd);  

     cudaFree (Pd); 

     } 

- the product data is copied from 
device memory to host memory 
so the value will be available to 
main() by a call to the 
cudaMemcpy() function 
- Then Md, Nd, and Pd are freed 
from the device memoryby calls 
to the cudaFree() functions 
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Matrix multiplication 
// Matrix multiplication kernel – thread specification 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int 

Width) 

{ 

// 2D Thread ID 

int tx = threadIdx.x; 

int ty = threadIdx.y; 

// Pvalue stores the Pd element that is computed by the thread 

float Pvalue = 0; 

for (int k = 0; k < Width; ++k) 

{ 

float Mdelement = Md[ty * Md.width + k]; 

float Ndelement = Nd[k * Nd.width + tx]; 

Pvalue += Mdelement * Ndelement; 

} 

// Write the matrix to device memory each thread writes one element 

Pd[ty * Width + tx] = Pvalue; 

} 
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Matrix multiplication 
// Matrix multiplication kernel – thread specification 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* 

Pd, int Width) 

{ 

// 2D Thread ID 

int tx = threadIdx.x; 

int ty = threadIdx.y; 

// Pvalue stores the Pd element that is computed by the thread 

float Pvalue = 0; 

for (int k = 0; k < Width; ++k) 

{ 

float Mdelement = Md[ty * Md.width + k]; 

float Ndelement = Nd[k * Nd.width + tx]; 

Pvalue += Mdelement * Ndelement; 

} 

// Write the matrix to device memory each thread writes one element 

Pd[ty * Width + tx] = Pvalue; 

} 

 

The CUDA-specific keyword 
__global__ in front of 
the declaration of 
MatrixMulKernel() 

indicates that the function 
is a kernel and that it can 
be called from a host 
functions to generate a grid 
of threads on a device 
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Matrix multiplication 
// Matrix multiplication kernel – thread specification 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int 

Width) 

{ 

// 2D Thread ID 

int tx = threadIdx.x; 

int ty = threadIdx.y; 

// Pvalue stores the Pd element that is computed by the thread 

float Pvalue = 0; 

for (int k = 0; k < Width; ++k) 

{ 

float Mdelement = Md[ty * Md.width + k]; 

float Ndelement = Nd[k * Nd.width + tx]; 

Pvalue += Mdelement * Ndelement; 

} 

// Write the matrix to device memory each thread writes one element 

Pd[ty * Width + tx] = Pvalue; 

} 

 

• The keywords threadIdx.x and 
threadIdx.y refer to the thread 
indices of a thread  
• The original loop variables i and 
j are now replaced with  
threadIdx.x and threadIdx.y  
• The CUDA threading hardware 
generates all of the threadIdx.x 
and threadIdx.y values for each 
thread, instead of the loop increment 
the values of i and j for loop iteration 
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Matrix multiplication 
// Matrix multiplication kernel – thread specification 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int 

Width) 

{ 

// 2D Thread ID 

int tx = threadIdx.x; 

int ty = threadIdx.y; 

// Pvalue stores the Pd element that is computed by the thread 

float Pvalue = 0; 

for (int k = 0; k < Width; ++k) 

{ 

float Mdelement = Md[ty * Md.width + k]; 

float Ndelement = Nd[k * Nd.width + tx]; 

Pvalue += Mdelement * Ndelement; 

} 

// Write the matrix to device memory each thread writes one element 

Pd[ty * Width + tx] = Pvalue; 

} 

 

• One limitation of this simple code is that it can only handle 
matrices of up to 16x16 
• This limitation comes from the fact that the kernel function 
does not use blockIdx 
• As a result, we are limited to using only one block of threads 
• Even if we used more blocks, threads from different blocks 
would calculate the same Pd element if they have the same 
threadIdx value  
• Because a thread block can have only up to 512 threads, and 
each thread calculates one element of the product matrix, the 
code can only calculate a product matrix of up to 512 elements 
• For square matrices, we are limited to 16x16 because 32x32 
requires more than 512 threads per block  
• This is obviously not acceptable 
• The product matrix must have millions of elements in order to 
have a sufficient amount of data parallelism to benefit from 
execution on a device 
• We revise the matrix multiplication kernel function 
using multiple blocks 
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Matrix multiplication 

 In order to accommodate larger matrices, we need to use 
multiple thread blocks 

 Conceptually, we break Pd into square tiles 

 All the Pd elements of a tile are computed by a block of 
threads 

 By keeping the dimensions of these Pd tiles small, we keep 
the total number of threads in each block under 512, the 
maximal allowable block size 

 We abbreviate threadIdx.x and threadIdx.y as tx and ty, 
and blockIdx.x and blockIdx.y as bx and by 
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Matrix multiplication 
 Consider a matrix 4x4, a very small TILE_WIDTH value 

(2) and divide the matrix into 4 tiles 

 We create blocks organized into 2x2 arrays of threads 

 Each block calculates 4 Pd elements 

Pd1,0 Pd0,0 

Pd0,1 

Pd2,0 Pd3,0 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 

Block(0,0) 

Block(1,1) Block(0,1) 

Block(1,0) 
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Matrix multiplication 
 Thread (0, 0) of block (0, 0) calculates Pd0,0, whereas 

thread (0, 0) of block (1, 0) calculates Pd2,0 

 the Pd element calculated by thread (0, 0) of block (1, 0) 
can be computed by  

 Pd[bx* TILE_WIDTH + tx] [by* TILE_WIDTH + ty] 
=Pd[1*2 + 0][0*2 + 0] = Pd[2][0] 

Pd1,0 Pd0,0 

Pd0,1 

Pd2,0 Pd3,0 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 

Block(0,0) 

Block(1,1) Block(0,1) 

Block(1,0) 
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Matrix multiplication 
 We also need the row (y) index of Md and the column 

(x) index of Nd for input values 

 the row index of Md used by thread (tx, ty) of block (bx, 
by) is (by*TILE_WIDTH + ty) 

 The column index of Nd used by the same thread is 
(bx*TILE_WIDTH + tx) 

Pd1,0 Pd0,0 

Pd0,1 

Pd2,0 Pd3,0 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 

Block(0,0) 

Block(1,1) Block(0,1) 

Block(1,0) 
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Matrix multiplication 
 Threads in block (0, 0) produce four 

dot products:  

 Thread (0, 0) generates Pd0,0 by 
calculating the dot product of row 0 of 
Md and column 0 of Nd 

 Thread (1, 0) generates Pd1,0 by 
calculating the dot product of row 0 of 
Md and column 1 of Nd 

 … 
Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 Advanced and Parallel Architectures 73 2014/2015 



Matrix multiplication 
 

 

 The arrows of Pd0,0, Pd1,0, Pd0,1, and 
Pd1,1 shows the row and column used 
for generating their result value 

Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 
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Matrix multiplication 

 Revised matrix multiplication kernel function with blocks 
__global__ void MatrixMulKernel(float* Md, float* 

Nd, float* Pd, int Width) 

{ 

// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 

// Calculate the column index of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

 

float Pvalue = 0; 

// each thread computes one element of the block 
sub-matrix 

for (int k = 0; k < Width; ++k) 

  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

 

  Pd[Row*Width+Col] = Pvalue; 

each thread uses its 
blockIdx and 
threadIdx values 
to identify the row 
index (Row) and the 
column index (Col) of 
the Pd element Advanced and Parallel Architectures 75 2014/2015 



Matrix multiplication 

 Revised matrix multiplication kernel function with blocks 
__global__ void MatrixMulKernel(float* Md, float* 

Nd, float* Pd, int Width) 

{ 

// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 

// Calculate the column index of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

 

float Pvalue = 0; 

// each thread computes one element of the block 
sub-matrix 

for (int k = 0; k < Width; ++k) 

  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

 

  Pd[Row*Width+Col] = Pvalue; 

It then performs a 
dot product on the 
row of Md and 
column of Nd to 
generate the value 
of the Pd element 
It eventually writes 
the Pd value to the 
appropriate global 
memory location 
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Matrix multiplication 

 This kernel can handle matrices of up to 16 x 65,535 
elements in each dimension 

 In the situation where matrices larger than this new 
limit are to be multiplied, one can divide the Pd matrix 
into submatrices of a size permitted by the kernel 

 All blocks can run in parallel with each other and will 
fully utilize parallel execution resources 
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Matrix multiplication 

 Revised host code to be used in the MatrixMultiplication() to 
launch the revised kernel MatrixMulKernel() with multiple 
blocks 

 Note that the dimGrid is Width/TILE_WIDTH for both the x 
dimension and the y dimension 

 
// Set up the execution configuration 

dim3 dimGrid(Width/TILE_WIDTH,Width/TILE_WIDTH) 

dim3 dimBlock(TILE_WIDTH,TILE_WIDTH) 

 

// launch the device computation thread 

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,Width); 
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Matrix multiplication 

 The table shows the global memory accesses done by all 
threads in block(0,0) 

 The threads are listed in the horizontal direction, with the 
time of access increasing downward in the vertical direction 

 Each thread accesses 4 elements of Md and 4 elements of 
Nd during its execution.  

Advanced and Parallel Architectures 

P0,0 

thread0,0 

P1,0 

thread1,0 

P0,1 

thread0,1 

P1,1 

thread1,1 

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0 

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1 

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2 

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3 

Access 

order 
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Matrix multiplication 

 Among the four threads highlighted, there is a significant 
overlap in terms of the Md and Nd elements they access: 

 thread(0,0) and thread(1,0) both access Md1,0 as well as the 
rest of row 0 of Md 

 thread(1,0) and thread(1,1) both access Nd1,0 as well as the 
rest of column 1 of Nd 
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P0,0 

thread0,0 

P1,0 

thread1,0 

P0,1 

thread0,1 

P1,1 

thread1,1 

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0 

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1 

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2 

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3 

Access 

order 
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Matrix multiplication 

 The kernel is written so both thread(0,0) and thread(1,0) 
access these Md row 0 elements from the global memory 

 In general, every Md and Nd element is accessed exactly 
twice during the execution of block(0,0) 

 If thread(0,0) and thread(1,0) collaborate so that Md 
elements are only loaded from global memory once, the 
total number of accesses to the global memory  by half 

 The potential reduction in global memory traffic in the 
matrix multiplication example is proportional to the 
dimension of the blocks used 

 NxN blocks  potential reduction of global memory is N  
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Matrix multiplication 

 The kernel is written so both thread(0,0) and thread(1,0) 
access these Md row 0 elements from the global memory 

 In general, every Md and Nd element is accessed exactly 
twice during the execution of block(0,0) 

 If thread(0,0) and thread(1,0) collaborate so that Md 
elements are only loaded from global memory once, the 
total number of accesses to the global memory  by half 

 The potential reduction in global memory traffic in the 
matrix multiplication example is proportional to the 
dimension of the blocks used 

 NxN blocks  potential reduction of global memory is N  
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Matrix multiplication 

 Algorithm where threads collaborate to reduce the traffic 
to the global memory: 

 threads collaboratively load Md and Nd elements into the 
shared memory before they individually use these elements in 
their dot product calculation.  

 The size of the shared memory is quite small  

 To no exceed the capacity of the shared memory 
when loading Md and Nd elements we can divide the 
Md and Nd matrices into smaller tiles 
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Matrix multiplication 

 Divide Md and Nd into 2x2 tiles 

 The dot product calculations performed by 
each thread are now divided into phases 

 In each phase, all threads in a block 
collaborate to load a tile of Md and a tile of 
Nd into the shared memory: 

 every thread in a block loads one Md element 
and one Nd element 
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Matrix multiplication 

 Activities of threads in block(0,0) (other blocks 
are the same) 

 At the beginning of Phase 1, the four threads of 
block(0,0) load a tile of Md into shared memory 

 thread(0,0) loads Md0,0 into Mds0,0 

 thread(1,0) loads Md1,0 into Mds1,0  

 thread(0,1) loads Md0,1 into Mds0,1 

 thread(1,1) loads Md1,1 into Mds1,1 
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 The shared memory array for the Md elements is called Mds, for 
the Nd elements is called Nds 

Phase 1 Phase 2 

T0,0 Md0,0  

‏↓

Mds0,0 

Nd0,0 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

Md2,0  

 ‏↓

Mds0,0  

Nd0,2 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md1,0 

‏↓

Mds1,0  

Nd1,0 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

Md3,0  

 ‏↓

Mds1,0  

Nd1,2 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md0,1 

‏↓

Mds0,1 

Nd0,1 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

Md2,1 

 ‏↓

Mds0,1 

Nd0,3 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md1,1 

‏↓

Mds1,1 

Nd1,1 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

Md3,1  

 ‏↓

Mds1,1  

Nd1,3 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

time 
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 At the beginning of Phase 1, the 
four threads of block(0,0) load a 
tile of  Md into the shared 
memory and a tile of Nd 

 These values are used in the 
calculation of the dot product 

 Note that each value in the 
shared memory is used twice 

Example  

 Md0,1 is loaded by thread0,1 into 
Mds1,1 and is used once by thread0,1 
and once by thread1,1 

 Nd1,0 is loaded by thread1,0 into 
Nds1,0 and is used once by thread1,0 
and once by thread1,1 

 

 

Phase 1 

T0,0 Md0,0  

‏↓

Mds0,0 

Nd0,0 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md1,0 

‏↓

Mds1,0  

Nd1,0 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md0,1 

‏↓

Mds0,1 

Nd0,1 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md1,1 

‏↓

Mds1,1 

Nd1,1 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

Matrix multiplication 
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 Phase 2 is similar and it allow to 
complete the computation 

 Note that the two phases use the 
same Mds e Nds. 

 

Phase2 

T0,0 Md2,0  

 ‏↓

Mds0,0  

Nd0,2 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md3,0  

 ‏↓

Mds1,0  

Nd1,2 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md2,1 

 ‏↓

Mds0,1 

Nd0,3 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md3,1  

 ‏↓

Mds1,1  

Nd1,3 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 
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Tiled matrix multiplication kernel using shared memories  
 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* 

Pd, int Width) 

{ 

1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 

2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 

 

3.  int bx = blockIdx.x;  int by = blockIdx.y; 

4.  int tx = threadIdx.x; int ty = threadIdx.y; 

 

// Identify the row and column of the Pd element to work on 

5.  int Row = by * TILE_WIDTH + ty; 

6.  int Col = bx * TILE_WIDTH + tx; 

 

Matrix multiplication 
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7.    float Pvalue = 0; 

// Loop over the Md and Nd tiles required to compute 
the Pd element 

8.    for (int m = 0; m < Width/TILE_WIDTH; ++m) { 

// Collaborative loading of Md and Nd tiles into shared 
memory 

9.    Mds[ty][tx] = Md[Row*Width+(m*TILE_WIDTH + tx)];  

10.    Nds[ty][tx] = Nd[Col+(m*TILE_WIDTH + ty)*Width]; 

11.     __syncthreads(); 

12.     for (int k = 0; k < TILE_WIDTH; ++k) 

13.    Pvalue += Mds[ty][k] * Nds[k][tx]; 

14.    synchthreads(); 

 } 

15.  Pd[Row*Width+Col] = Pvalue; 

   } 

Matrix multiplication 
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