
Advanced Parallel Architecture

Annalisa Massini - 2014/2015

GPU - Graphics Processing Units
Part 2

Advanced and Parallel Architectures 2 2014/2015

Programming Massively Parallel Processors

D.B. Kirk W. W. Hwu

 Chapter 3 - Introduction to Data Parallelism and CUDA C

 Sections 3.2 - 3.6

 Chapter 4 - Data Parallel Execution Model

 Sections 4.5 - 4.7

 Chapter 5 - CUDA Memories

 Sections 5.2 - 5.4

Multicore and GPU Programming

G. Barlas

 Chapter 6 - GPU Programming

 Sections 6.2 - 6.7

 Advanced and Parallel Architectures 3 2014/2015

CUDA Programming Model

 The GPU is viewed as a compute device that:
 Is a coprocessor to the CPU (host)

 Has its own DRAM (device memory)

 Runs many threads in parallel

 Data-parallel portions of an application are executed on
the device as kernels which run in parallel on many
threads

 Differences between GPU and CPU threads
 GPU threads are extremely lightweight

 Very little creation overhead

 GPU needs 1000s of threads for full efficiency

 Multi-core CPU needs only a few

Advanced and Parallel Architectures 4 2014/2015

CPUs: Latency Oriented Design

 Large caches

 Convert long latency memory
accesses to short latency cache
accesses

 Sophisticated control

 Branch prediction for reduced
branch latency

 Data forwarding for reduced
data latency

 Powerful ALU

 Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

Advanced and Parallel Architectures 5 2014/2015

GPUs: Throughput Oriented Design

 Small caches

 To boost memory throughput

 Simple control

 No branch prediction

 No data forwarding

 Energy efficient ALUs

 Many, long latency but heavily
pipelined for high throughput

 Require massive number of
threads to tolerate latencies

DRAM

GPU

Advanced and Parallel Architectures 6 2014/2015

GPU Architecture

 A typical CUDA-capable GPU can be organized into

 an array of highly threaded streaming multiprocessors (SMs)

 in Figure, two SMs form a building block; but, the number of
SMs in a building block can vary from one generation of CUDA
GPUs to another generation

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Advanced and Parallel Architectures 7 2014/2015

GPU Architecture

 Each SM has a number of streaming processors (SPs) that
share control logic and instruction cache

 Each GPU currently comes with up to 4 gigabytes of
graphics double data rate (GDDR) DRAM, referred to as
global memory

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Advanced and Parallel Architectures 8 2014/2015

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

GPU Architecture

 The parallel G80 chip has 128 SPs (16 SMs, 8 SPs)

 Each SP has a multiply–add (MAD) unit and an additional
multiply unit.

 With 128 SPs, the G80 produces a total of over 500 gigaflops

 The GT200 (240 SPs) exceeds 1 teraflops and the GTX680 1,5
teraflops

Advanced and Parallel Architectures 9 2014/2015

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

GPU Architecture

 The G80 chip supports up to 768 threads per SM, which
sums up to about 12,000 threads for this chip.

 The GT200 supports 1024 threads per SM and up to
about 30,000 threads

Advanced and Parallel Architectures 10 2014/2015

CUDA Program Structure

 The structure of a CUDA program reflects the computing
system consisting of

 a host, which is a traditional central processing unit (CPU)

 one or more devices (GPUs)

 A CUDA program is a unified source code encompassing
both host and device code

 The NVIDIA C compiler - nvcc - separates the two during
the compilation process

Advanced and Parallel Architectures 11 2014/2015

CUDA Program Structure

 The host code is:

 straight ANSI C code

 it is further compiled with the host’s standard C compilers
and runs as an ordinary CPU process

 The device code is:

 written using ANSI C extended with keywords for labeling
data-parallel functions, called kernels, and their
associated data structures

 The device code is typically further compiled by the nvcc
and executed on a GPU device

Advanced and Parallel Architectures 12 2014/2015

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

Compiling A CUDA Program

Advanced and Parallel Architectures 13 2014/2015

CUDA Execution Model
 The execution starts with host (CPU) execution

 When a kernel function is launched, the execution is moved to a
device (GPU), where a large number of threads are generated to
take advantage of abundant data parallelism

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏

KernelB<<< nBlk, nTid >>>(args);

Advanced and Parallel Architectures 14

CUDA Execution Model
 All the threads that are generated by a kernel during an

invocation are collectively called a grid

 Figure shows the execution of two grids of threads

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏

KernelB<<< nBlk, nTid >>>(args);

Advanced and Parallel Architectures 15

CUDA Execution Model
 When all threads of a kernel complete their execution:

 the corresponding grid terminates

 the execution continues on the host until another kernel is
invoked

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏

KernelB<<< nBlk, nTid >>>(args);

Advanced and Parallel Architectures 16

Vector Addition – Traditional C Code
// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)

{

 for (i = 0, i < n, i++)

 C[i] = A[i] + B[i];

}

int main()

{

 // Memory allocation for A_h, B_h, and C_h

 // I/O to read A_h and B_h, N elements

 …

 vecAdd(A_h, B_h, C_h, N);

}
Advanced and Parallel Architectures 17 2014/2015

void vecAdd(float* h_A, float* h_B, float* h_C, int

n)‏

{

 int size = n* sizeof(float);

 float* d_A, d_B, d_C;

 …

1. // Allocate device memory for A, B, and C

 // copy A and B to device memory

2. // Kernel launch code – to have the device

 // to perform the actual vector addition

3. // copy C from the device memory

 // Free device vectors

}

Part 1

CPU

Host Memory

GPU
Part 2

Device Memory

Part 3

Vector Addition – Kernel

Advanced and Parallel Architectures 18

Device Memory and Data Transfer

 The host and devices have separate memory spaces

 To execute a kernel on a device

 the programmer needs to allocate memory on the device

 transfer data from the host memory to the allocated device
memory

 this corresponds to Part 1 of Figure

 After device execution

 the programmer needs to transfer result data from the device
memory back to the host memory

 free up the device memory

 this corresponds to Part 3 of Figure

Advanced and Parallel Architectures

CPU

Host Memory

GPU
Part 2

Device Memory

Part 3

Part 1

19 2014/2015

Device Memory and Data Transfer

 The CUDA memory model is supported by API functions
that help programmers to manage data in memories

 The function cudaMalloc():

 called from the host code to allocate object in the device
global memory

 Two parameters:

 address of a pointer variable to the allocated object after allocation

 size of the allocated object in terms of bytes

 The function cudaFree() :

 Frees object from device global memory

 Pointer to freed object

 The function cudaMemcpy() for memory data transfer

Advanced and Parallel Architectures 20 2014/2015

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Device Memory Management API

 cudaMalloc()

 Allocates object in the device
global memory

 Two parameters

 Address of a pointer to the
allocated object

 Size of of allocated object in terms
of bytes

 cudaFree()

 Frees object from device global
memory

 Pointer to freed object

Advanced and Parallel Architectures 21 2014/2015

Host

Host-Device Data Transfer API functions

 cudaMemcpy()

 memory data transfer

 requires four parameters

 Pointer to destination

 Pointer to source

 Number of bytes copied

 Type/Direction of transfer

 Transfer to device is asynchronous

(Device) Grid

Global

Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Advanced and Parallel Architectures 22 2014/2015

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 int size = n * sizeof(float);

 float* d_A, d_B, d_C;

1. // Transfer A and B to device memory

 cudaMalloc((void **) &d_A, size);

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &d_B, size);

 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

 // Allocate device memory for

 cudaMalloc((void **) &d_C, size);

2. // Kernel invocation code – to be shown later

 …

3. // Transfer C from device to host

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 // Free device memory for A, B, C

 cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

Vector Addition – Traditional C Code

Advanced and Parallel Architectures 23 2014/2015

Arrays of Parallel Threads

 A kernel function specifies the code to be executed by all
threads during a parallel phase

 All of these threads execute the same code

 A CUDA kernel is executed by a grid (array) of threads

 All threads in a grid run the same kernel code (SPMD)‏

 Each thread has an index that it uses to compute memory
addresses and make control decisions

Advanced and Parallel Architectures

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

…

24 2014/2015

Thread Blocks: Scalable Cooperation

 Thread array is divided into multiple blocks

 Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

 Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

… … …

Advanced and Parallel Architectures 25 2014/2015

Arrays of Parallel Threads

 When a kernel is invoked, it is executed as grid of parallel
threads

 Each CUDA thread grid typically is comprised of
thousands to millions of lightweight GPU threads per
kernel invocation

 Creating enough threads to fully utilize the hardware
often requires a large amount of data parallelism

Advanced and Parallel Architectures 26 2014/2015

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

 Threads in a grid are organized into
a two-level hierarchy

 top level, each grid consists of one or
more thread blocks

 All blocks in a grid have the same
number of threads organized in the
same manner

 Each grid is organized as a as a three-
dimensional array of blocks

 Each block has a unique three
dimensional coordinate given by the
CUDA specific keywords blockIdx.x,
blockIdx.y and blockIdx.z

Advanced and Parallel Architectures 27 2014/2015

blockIdx and threadIdx

 Threads in a grid are organized into
a two-level hierarchy

 Each thread block is organized as a
three-dimensional array of threads
with a total size of up to 512 threads

 The coordinates of threads in a block
are uniquely defined by three thread
indices: threadIdx.x, threadIdx.y,
and threadIdx.z

 Not all applications will use all three
dimensions of a thread block

 In Figure 3.13, each thread block is
organized

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced and Parallel Architectures 28 2014/2015

blockIdx and threadIdx

 Threads in a grid are organized into
a two-level hierarchy

 In Figure

 each thread block is organized into a
4x2x2 three-dimensional array of
threads

 this gives Grid 1 a total of 4x16 = 64
threads

 Each thread uses indices to decide
what data to work on
 blockIdx: 1D, 2D, or 3D (CUDA 4.0)

 threadIdx: 1D, 2D, or 3D

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Advanced and Parallel Architectures 29 2014/2015

CUDA Thread Organization

 When a thread executes the kernel function, references to
the blockIdx and threadIdx variables return the
coordinates of the thread

 Additional built-in variables, gridDim and blockDim, provide
the dimension of the grid and the dimension of each block

 threadID = blockIdx.x * blockDim.x + threadIdx

identifies the part of the input data to read from and the
part of the output data structure to write to

 Example Thread 3 of Block 0 has a threadID value of 0*M + 3 = 3

 Example Thread 3 of Block 5 has a threadID value of 5*M + 3

Advanced and Parallel Architectures 30 2014/2015

CUDA threads, blocks and grids
 Nvidia use the Compute Capability specification to encode what

each generation of GPU chips is capable of

 The Compute Capability (CC) of a GPU can be discovered by
running the deviceQuery utility

Advanced and Parallel Architectures 31 2014/2015

CUDA Thread Organization

 The exact organization of a grid is determined by the
execution configuration provided at kernel launch

 The first parameter specifies the dimensions of the grid as # blocks

 The second specifies the dimensions of each block as # threads

 Each such parameter is a dim3 type, a C struct with three unsigned
integer fields: x, y, and z

 Example
dim3 dimGrid(128, 1, 1);

dim3 dimBlock(32, 1, 1);

vecAddKernel<<<dimGrid, dimBlock>>>(. . .);

oppure
dim3 cat(128, 1, 1);

dim3 dog(32, 1, 1);

KernelFunction<<<cat, dog>>>(. . .);

Advanced and Parallel Architectures 32 2014/2015

Execution Configuration Examples

Assuming we have

 dim3 b(3,3,3);

 dim3 g(20,100);

Different grid-block combination are possible

 foo<<<g,b>>>(); // Run a 20x100 grid made of 3x3x3 blocks

 foo<<<10,b>>>(); // Run a 10-block grid, each block made by 3x3x3
 threads

 foo<<<g,256>>>(); // Run a 20x100 grid, made of 256 threads

 foo<<<g,2048>>>(); // An invalid example: maximum block size is 1024
 threads even for compute capability 5.x

 foo<<<5,g>>>(); // Another invalid example, that specifies a block size
 of 20x100=2000 threads

 foo<<<10,256>>>; // simplified configuration for a 1D grid of 1D blocks

Advanced and Parallel Architectures 33 2014/2015

Synchronization

 CUDA allows threads in the same block to coordinate
their activities using a barrier synchronization function,
__syncthreads()

 the thread that executes the function call will be held at the
calling location until every thread in the block reaches the
location

 A __syncthreads() statement must be executed by all
threads in a block of the kernel before any moves on to
the next phase

Advanced and Parallel Architectures 34 2014/2015

Thread and Block Assignment

 Once a kernel is launched, the CUDA runtime system
generates the corresponding grid of threads

 threads are assigned to execution resources on a block-by-
block basis

 The execution resources are organized into streaming
multiprocessors (SMs)

 Each device has a limit on

 the number of block that

can be assigned to each SM

Advanced and Parallel Architectures

t0 t1 t2 …
tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 …
tm

Blocks

SM 1 SM 0

35 2014/2015

Thread and Block Assignment

 When an insufficient amount of any one or more types of
resources needed for the simultaneous execution of
blocks, the CUDA runtime automatically reduces the
number of blocks assigned to each SM

 The runtime system maintains a list of blocks that need to
execute and assigns new blocks to SMs as they complete
the execution of blocks previously assigned to them

Advanced and Parallel Architectures

t0 t1 t2 …
tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 …
tm

Blocks

SM 1 SM 0

36 2014/2015

Thread Scheduling

 Once a block is assigned to a streaming multiprocessor, it
is further divided into 32-thread units called warps

 The warp is the unit of thread scheduling in SMs

 Each warp consists of 32 threads of consecutive threadIdx
values:

 threads 0 through 31 form the first warp

 threads 32 through 63 the second warp, and so on

 We can calculate the number of warps that reside in an
SM for a given block size and a given number of blocks
assigned to each SM

Advanced and Parallel Architectures 37 2014/2015

Thread Scheduling

 Each Block is executed as
32-thread Warps
– Warps are scheduling units in SM

 Example If 3 blocks are
assigned to an SM and each
block has 256 threads, how
many warps are there in an
SM?
 3 blocks, each block 256 threads

 each block has 256/32 = 8 warps

 having 3 blocks in each SM, we
have 8 x 3 = 24 warps in each SM

Advanced and Parallel Architectures

…
t0 t1 t2 …

t31

…

…
t0 t1 t2 …

t31

…

Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 …

t31

…

Block 3 Warps

38 2014/2015

Thread Scheduling

 Why do we need to have so many warps in an SM if there are
only 8 SPs in an SM?

 The answer is for efficiently executing long-latency operations such
as global memory accesses

 When an instruction executed by the threads in a warp needs to wait
for the result of a previously initiated long-latency operation, the
warp is not selected for execution

 Another resident warp (that is no waiting for results) is selected for
execution

 If more than one warp is ready for execution, a priority mechanism is
used to select one for execution

 This mechanism of filling the latency of expensive operations with
work from other threads is often referred to as latency hiding

Advanced and Parallel Architectures 39 2014/2015

Thread Scheduling

 Note that warp scheduling is also used for tolerating other
types of long latency operations such as pipelined floating-
point arithmetic and branch instructions

 With enough warps around

 the hardware will likely find a warp to execute at any point in time

 full use of the execution hardware in spite of long-latency operations

 The selection of ready warps for execution

 does not introduce any idle time into the execution timeline

 zero-overhead thread scheduling

 With warp scheduling, the long waiting time of warp
instructions is hidden by executing instructions from other
warps

Advanced and Parallel Architectures 40 2014/2015

SM Warp Scheduling
 SM hardware implements zero-overhead

Warp scheduling
 Warps whose next instruction has its

operands ready for consumption are
eligible for execution

 Eligible Warps are selected for execution
on a prioritized scheduling policy

 All threads in a Warp execute the same
instruction when selected

 4 clock cycles needed to dispatch the
same instruction for all threads in a Warp
in G80
 If one global memory access is needed for

every 4 instructions
 A minimum of 13 Warps are needed to

fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

CS6963
Advanced and Parallel Architectures 41

Thread Scheduling

 List of GPU chips and their SM capabilty

Advanced and Parallel Architectures 42 2014/2015

Exercise

Simple exercise (register and shared memory not considered)

 Assume a CUDA device allowing 8 blocks, 1024 threads per
SM and 512 thread in each block

 For matrix multiplication, should we use 8x8, 16x16, or 32x32
thread blocks?

 Analyze the pros and cons of each choice:

 If we use 8x8 blocks, each block would have only 64 threads,
and we will need 1024/64 = 12 blocks to fully occupy an SM

 We are limited to 8 blocks in each SM, we will end up with only
64 x 8 = 512 threads in each SM

 Then the SM execution resources will likely be underutilized
because there will be fewer warps to schedule around long-
latency operations

Advanced and Parallel Architectures 43 2014/2015

Exercise

Simple exercise (register and shared memory not considered)

 Assume a CUDA device allowing 8 blocks, 1024 threads per SM
and 512 thread in each block

 For matrix multiplication, should we use 8x8, 16x16, or 32x32
thread blocks?

 The 16x16 blocks give 256 threads per block.

 This means that each SM can take 1024/256 = 4 blocks.

 This is within the 8-block limitation.

 Good configuration:

 full thread capacity in each SM and the

 maximal number of warps for scheduling around the long-latency oper.

 The 32x32 blocks exceed the limitation of up to 512 threads per
block

Advanced and Parallel Architectures 44 2014/2015

Programmer View of CUDA Memories

 At the bottom of the figure,
we see global memory and
constant memory

 These types of memory can
be written (W) and read (R)
by the host by calling API
functions

 The constant memory supports
short-latency, high-bandwidth,
read-only access by the device
when all threads simultaneously
access the same location

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures 45 2014/2015

Programmer View of CUDA Memories
Device code can:
 R/W per-thread registers

 R/W per-thread local memory

 R/W per-block shared memory

 R/W per-grid global memory

 Read-only per-grid constant
memory

Host code can:

 Transfer data to/from per-grid
global and constant memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures 46 2014/2015

Programmer View of CUDA Memories

 Registers and shared memory
are on-chip memories

 Variables on these memories
can be accessed at very high
speed in a highly parallel
manner

 Registers are allocated to
individual threads and each
thread can only access its own
registers

 A kernel function uses registers
to hold frequently accessed
variables private to each thread

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures 47 2014/2015

Programmer View of CUDA Memories

 Registers and shared
memory are on-chip
memories

 Shared memory is allocated to
thread blocks;

 all threads in a block can
access variables in the shared
memory locations allocated to
the block

 Shared memory is used by
threads to cooperate by sharing
their input data and the
intermediate results

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Advanced and Parallel Architectures 48 2014/2015

Variables

 Table presents the CUDA syntax for declaring program
variables into the various types of device memory

 Each declaration gives to CUDA variable:

 A scope identifies the range of threads that can access the
variable: single thread only, all threads of a block, or all threads
of all grids

 A lifetime specifies the portion of the program’s execution
duration when the variable is available for use: either within a
kernel’s invocation or throughout the entire application

Advanced and Parallel Architectures 49 2014/2015

Variable declaration Memory Scope Lifetime

Automatic Variables register thread kernel

__device__ __shared__ int SharedVar; shared block kernel

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

A motivating example

 Lets assume that:

 We have a kernel that requires 48 registers per thread

 Target platform is a GTX 580 card (CC 2.0, 16SMs, 32k registers/SM)

 Execution configuration is a grid of 4x5x3 blocks, each 100 threads

 Each block requires 100*48=4800 registers

 The grid is made of 4*5*3 = 60 blocks that need to be
distributed to the 16 SMs of the card

Advanced and Parallel Architectures 50 2014/2015

A motivating example

 There will be 12 SMs that will receive 4 blocks and 4 SMs that
will receive 3 blocks  Inefficient

 Additionally, each of the 100-thread blocks would be split into

warps

 The first three warps would have 32 threads and the last
would have 4 threads !

 So during the execution of the last warp of each block, of the
SPs will be idle

 Advanced and Parallel Architectures 51 2014/2015

Matrix multiplication

 Each element of the product matrix P is
generated by performing a dot product
between a row of input matrix M and a
column of input matrix N: P=MxN

 The dot product operations for computing
different matrix P elements can be
simultaneously performed

 None of these dot products will affect the
results of each other M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

i

k

k

j

Advanced and Parallel Architectures 52 2014/2015

Matrix multiplication

 For large matrices, the number of dot products
can be very large

 Example, a 1000 x 1000 matrix multiplication
has 1,000,000 independent dot products,
each involving 1000 multiply and 1000
accumulate arithmetic operations

 Matrix multiplication of large dimensions can
have very large amount of data parallelism

M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

i

k

k

j

Advanced and Parallel Architectures 53 2014/2015

Matrix multiplication

 the entire matrix multiplication computation
can be implemented as a kernel

 Each thread is used to compute one element
of output matrix P

 The number of threads used by the kernel is a
function of the matrix dimension

 For a 1000 x 1000 matrix multiplication, the
kernel would generate 1,000,000 threads
when it is invoked M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

i

k

k

j

Advanced and Parallel Architectures 54 2014/2015

Matrix multiplication

 Assume that the matrices are square in shape,
and the dimension of each matrix is specified
by the parameter WIDTH

 The main program first allocates the M, N, and
P matrices in the host memory and then
performs I/O to read in M and N

 After completing the multiplication, the main
function performs I/O to write the product
matrix P and to free memory M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

i

k

k

j

Advanced and Parallel Architectures 55 2014/2015

Matrix multiplication

CPU-only matrix multiplication function
 void MatrixMulOnHost(float* M, float* N,

float* P, int Width)‏

{

for (int i = 0; i < Width; ++i)‏

 for (int j = 0; j < Width; ++j) {

 float sum = 0;

 for (int k = 0; k < Width; ++k) {

 float a = M[i * width + k];

 float b = N[k * width + j];

 sum += a * b;

 }

 P[i * Width + j] = sum;

 }

}

M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

i

k

k

j

Advanced and Parallel Architectures 56 2014/2015

Matrix multiplication

 The index used for accessing the M matrix in the
innermost loop is i*Width+k

 The M matrix elements are placed into the system
memory according to the row-major convention:

 All elements of a row are placed into consecutive memory
locations

 The rows are then placed one after another

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 M3,1 M3,0 M3,2 M3,3

M

Advanced and Parallel Architectures 57 2014/2015

Matrix multiplication

 To port the matrix multiplication function into CUDA, we can
modify the MatrixMultiplication() function to move the bulk of
the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1.// Allocate device memory for M, N, P and

 // load M, N to device memory

2.// Kernel invocation code to have the device to perform

 // the actual matrix multiplication

3.// copy P from the device

 // Free device matrices

 } Advanced and Parallel Architectures 58 2014/2015

Matrix multiplication

 To port the matrix multiplication function into CUDA, we can
modify the MatrixMultiplication() function to move the bulk of
the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1.// Allocate device memory for M, N, P and

 // load M, N to device memory

2.// Kernel invocation code to have the device to perform

 // the actual matrix multiplication

3.// copy P from the device

 // Free device matrices

 }

Part 1
- allocates device (GPU)
memory to hold copies
of the M, N, and P
matrices, and
- copies these matrices
over to the device
memory

Advanced and Parallel Architectures 59 2014/2015

Matrix multiplication

 To port the matrix multiplication function into CUDA, we can
modify the MatrixMultiplication() function to move the bulk of
the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1.// Allocate device memory for M, N, P and

 // load M, N to device memory

2.// Kernel invocation code to have the device to perform

 // the actual matrix multiplication

3.// copy P from the device

 // Free device matrices

 }

Part 2
- invokes a kernel that
launches parallel
execution of the actual
matrix multiplication on
the device

Advanced and Parallel Architectures 60 2014/2015

Matrix multiplication

 To port the matrix multiplication function into CUDA, we can
modify the MatrixMultiplication() function to move the bulk of
the calculation to a CUDA device

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1.// Allocate device memory for M, N, P and

 // load M, N to device memory

2.// Kernel invocation code to have the device to perform

 // the actual matrix multiplication

3.// copy P from the device

 // Free device matrices

 }

Part 3
- copies the product
matrix P from the device
memory back to the
host memory

Advanced and Parallel Architectures 61 2014/2015

Matrix multiplication

Assume M, N and P are on the host and Md, Nd and Pd on device
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1. // Allocate and Load M, N to device memory

 cudaMalloc(&Md, size);

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc(&Pd, size);

Advanced and Parallel Architectures 62 2014/2015

Matrix multiplication

Assume M, N and P are on the host and Md, Nd and Pd on device
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 …

1. // Allocate and Load M, N to device memory

 cudaMalloc(&Md, size);

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc(&Pd, size);

The two symbolic constants,
cudaMemcpyHostToDevice
and
cudaMemcpyDeviceToHost
are predefined constants of the
CUDA programming
environment, recognized by
cudaMemcpy

Advanced and Parallel Architectures 63 2014/2015

Matrix multiplication
2. // Kernel invocation code – to be shown later

 …

3. // Read P from the device

 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices

 cudaFree(Md);

 cudaFree(Nd);

 cudaFree (Pd);

 }

- the product data is copied from
device memory to host memory
so the value will be available to
main() by a call to the
cudaMemcpy() function
- Then Md, Nd, and Pd are freed
from the device memoryby calls
to the cudaFree() functions

Advanced and Parallel Architectures 64 2014/2015

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Md.width + k];

float Ndelement = Nd[k * Nd.width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

Advanced and Parallel Architectures 65 2014/2015

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float*

Pd, int Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Md.width + k];

float Ndelement = Nd[k * Nd.width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

The CUDA-specific keyword
__global__ in front of
the declaration of
MatrixMulKernel()

indicates that the function
is a kernel and that it can
be called from a host
functions to generate a grid
of threads on a device

Advanced and Parallel Architectures 66 2014/2015

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Md.width + k];

float Ndelement = Nd[k * Nd.width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

• The keywords threadIdx.x and
threadIdx.y refer to the thread
indices of a thread
• The original loop variables i and
j are now replaced with
threadIdx.x and threadIdx.y
• The CUDA threading hardware
generates all of the threadIdx.x
and threadIdx.y values for each
thread, instead of the loop increment
the values of i and j for loop iteration

Advanced and Parallel Architectures 67 2014/2015

Matrix multiplication
// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int

Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Md.width + k];

float Ndelement = Nd[k * Nd.width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

• One limitation of this simple code is that it can only handle
matrices of up to 16x16
• This limitation comes from the fact that the kernel function
does not use blockIdx
• As a result, we are limited to using only one block of threads
• Even if we used more blocks, threads from different blocks
would calculate the same Pd element if they have the same
threadIdx value
• Because a thread block can have only up to 512 threads, and
each thread calculates one element of the product matrix, the
code can only calculate a product matrix of up to 512 elements
• For square matrices, we are limited to 16x16 because 32x32
requires more than 512 threads per block
• This is obviously not acceptable
• The product matrix must have millions of elements in order to
have a sufficient amount of data parallelism to benefit from
execution on a device
• We revise the matrix multiplication kernel function
using multiple blocks

Advanced and Parallel Architectures 68 2014/2015

Matrix multiplication

 In order to accommodate larger matrices, we need to use
multiple thread blocks

 Conceptually, we break Pd into square tiles

 All the Pd elements of a tile are computed by a block of
threads

 By keeping the dimensions of these Pd tiles small, we keep
the total number of threads in each block under 512, the
maximal allowable block size

 We abbreviate threadIdx.x and threadIdx.y as tx and ty,
and blockIdx.x and blockIdx.y as bx and by

Advanced and Parallel Architectures 69 2014/2015

Matrix multiplication
 Consider a matrix 4x4, a very small TILE_WIDTH value

(2) and divide the matrix into 4 tiles

 We create blocks organized into 2x2 arrays of threads

 Each block calculates 4 Pd elements

Pd1,0 Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

Block(0,0)

Block(1,1) Block(0,1)

Block(1,0)

Advanced and Parallel Architectures 70 2014/2015

Matrix multiplication
 Thread (0, 0) of block (0, 0) calculates Pd0,0, whereas

thread (0, 0) of block (1, 0) calculates Pd2,0

 the Pd element calculated by thread (0, 0) of block (1, 0)
can be computed by

 Pd[bx* TILE_WIDTH + tx] [by* TILE_WIDTH + ty]
=Pd[1*2 + 0][0*2 + 0] = Pd[2][0]

Pd1,0 Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

Block(0,0)

Block(1,1) Block(0,1)

Block(1,0)

Advanced and Parallel Architectures 71 2014/2015

Matrix multiplication
 We also need the row (y) index of Md and the column

(x) index of Nd for input values

 the row index of Md used by thread (tx, ty) of block (bx,
by) is (by*TILE_WIDTH + ty)

 The column index of Nd used by the same thread is
(bx*TILE_WIDTH + tx)

Pd1,0 Pd0,0

Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

Block(0,0)

Block(1,1) Block(0,1)

Block(1,0)

Advanced and Parallel Architectures 72 2014/2015

Matrix multiplication
 Threads in block (0, 0) produce four

dot products:

 Thread (0, 0) generates Pd0,0 by
calculating the dot product of row 0 of
Md and column 0 of Nd

 Thread (1, 0) generates Pd1,0 by
calculating the dot product of row 0 of
Md and column 1 of Nd

 …
Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3 Advanced and Parallel Architectures 73 2014/2015

Matrix multiplication

 The arrows of Pd0,0, Pd1,0, Pd0,1, and
Pd1,1 shows the row and column used
for generating their result value

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3 Advanced and Parallel Architectures 74 2014/2015

Matrix multiplication

 Revised matrix multiplication kernel function with blocks
__global__ void MatrixMulKernel(float* Md, float*

Nd, float* Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block
sub-matrix

for (int k = 0; k < Width; ++k)

 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

 Pd[Row*Width+Col] = Pvalue;

each thread uses its
blockIdx and
threadIdx values
to identify the row
index (Row) and the
column index (Col) of
the Pd element Advanced and Parallel Architectures 75 2014/2015

Matrix multiplication

 Revised matrix multiplication kernel function with blocks
__global__ void MatrixMulKernel(float* Md, float*

Nd, float* Pd, int Width)

{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block
sub-matrix

for (int k = 0; k < Width; ++k)

 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

 Pd[Row*Width+Col] = Pvalue;

It then performs a
dot product on the
row of Md and
column of Nd to
generate the value
of the Pd element
It eventually writes
the Pd value to the
appropriate global
memory location

Advanced and Parallel Architectures 76 2014/2015

Matrix multiplication

 This kernel can handle matrices of up to 16 x 65,535
elements in each dimension

 In the situation where matrices larger than this new
limit are to be multiplied, one can divide the Pd matrix
into submatrices of a size permitted by the kernel

 All blocks can run in parallel with each other and will
fully utilize parallel execution resources

Advanced and Parallel Architectures 77 2014/2015

Matrix multiplication

 Revised host code to be used in the MatrixMultiplication() to
launch the revised kernel MatrixMulKernel() with multiple
blocks

 Note that the dimGrid is Width/TILE_WIDTH for both the x
dimension and the y dimension

// Set up the execution configuration

dim3 dimGrid(Width/TILE_WIDTH,Width/TILE_WIDTH)

dim3 dimBlock(TILE_WIDTH,TILE_WIDTH)

// launch the device computation thread

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md,Nd,Pd,Width);

Advanced and Parallel Architectures 78 2014/2015

Matrix multiplication

 The table shows the global memory accesses done by all
threads in block(0,0)

 The threads are listed in the horizontal direction, with the
time of access increasing downward in the vertical direction

 Each thread accesses 4 elements of Md and 4 elements of
Nd during its execution.

Advanced and Parallel Architectures

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order

79 2014/2015

Matrix multiplication

 Among the four threads highlighted, there is a significant
overlap in terms of the Md and Nd elements they access:

 thread(0,0) and thread(1,0) both access Md1,0 as well as the
rest of row 0 of Md

 thread(1,0) and thread(1,1) both access Nd1,0 as well as the
rest of column 1 of Nd

Advanced and Parallel Architectures

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access

order

80 2014/2015

Matrix multiplication

 The kernel is written so both thread(0,0) and thread(1,0)
access these Md row 0 elements from the global memory

 In general, every Md and Nd element is accessed exactly
twice during the execution of block(0,0)

 If thread(0,0) and thread(1,0) collaborate so that Md
elements are only loaded from global memory once, the
total number of accesses to the global memory by half

 The potential reduction in global memory traffic in the
matrix multiplication example is proportional to the
dimension of the blocks used

 NxN blocks  potential reduction of global memory is N

Advanced and Parallel Architectures 81 2014/2015

Matrix multiplication

 The kernel is written so both thread(0,0) and thread(1,0)
access these Md row 0 elements from the global memory

 In general, every Md and Nd element is accessed exactly
twice during the execution of block(0,0)

 If thread(0,0) and thread(1,0) collaborate so that Md
elements are only loaded from global memory once, the
total number of accesses to the global memory by half

 The potential reduction in global memory traffic in the
matrix multiplication example is proportional to the
dimension of the blocks used

 NxN blocks  potential reduction of global memory is N

Advanced and Parallel Architectures

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

82 2014/2015

Matrix multiplication

 Algorithm where threads collaborate to reduce the traffic
to the global memory:

 threads collaboratively load Md and Nd elements into the
shared memory before they individually use these elements in
their dot product calculation.

 The size of the shared memory is quite small

 To no exceed the capacity of the shared memory
when loading Md and Nd elements we can divide the
Md and Nd matrices into smaller tiles

Advanced and Parallel Architectures 83 2014/2015

Matrix multiplication

 Divide Md and Nd into 2x2 tiles

 The dot product calculations performed by
each thread are now divided into phases

 In each phase, all threads in a block
collaborate to load a tile of Md and a tile of
Nd into the shared memory:

 every thread in a block loads one Md element
and one Nd element

Advanced and Parallel Architectures

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

84 2014/2015

Matrix multiplication

 Activities of threads in block(0,0) (other blocks
are the same)

 At the beginning of Phase 1, the four threads of
block(0,0) load a tile of Md into shared memory

 thread(0,0) loads Md0,0 into Mds0,0

 thread(1,0) loads Md1,0 into Mds1,0

 thread(0,1) loads Md0,1 into Mds0,1

 thread(1,1) loads Md1,1 into Mds1,1

Advanced and Parallel Architectures

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

85 2014/2015

 The shared memory array for the Md elements is called Mds, for
the Nd elements is called Nds

Phase 1 Phase 2

T0,0 Md0,0

‏↓

Mds0,0

Nd0,0

 ‏↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

Md2,0

 ‏↓

Mds0,0

Nd0,2

 ‏↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

‏↓

Mds1,0

Nd1,0

 ‏↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

Md3,0

 ‏↓

Mds1,0

Nd1,2

 ‏↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

‏↓

Mds0,1

Nd0,1

 ‏↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

Md2,1

 ‏↓

Mds0,1

Nd0,3

 ‏↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

‏↓

Mds1,1

Nd1,1

 ‏↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Md3,1

 ‏↓

Mds1,1

Nd1,3

 ‏↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

time

Matrix multiplication

Advanced and Parallel Architectures 86

 At the beginning of Phase 1, the
four threads of block(0,0) load a
tile of Md into the shared
memory and a tile of Nd

 These values are used in the
calculation of the dot product

 Note that each value in the
shared memory is used twice

Example

 Md0,1 is loaded by thread0,1 into
Mds1,1 and is used once by thread0,1
and once by thread1,1

 Nd1,0 is loaded by thread1,0 into
Nds1,0 and is used once by thread1,0
and once by thread1,1

Phase 1

T0,0 Md0,0

‏↓

Mds0,0

Nd0,0

 ‏↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

‏↓

Mds1,0

Nd1,0

 ‏↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

‏↓

Mds0,1

Nd0,1

 ‏↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

‏↓

Mds1,1

Nd1,1

 ‏↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Matrix multiplication

Advanced and Parallel Architectures 87

 Phase 2 is similar and it allow to
complete the computation

 Note that the two phases use the
same Mds e Nds.

Phase2

T0,0 Md2,0

 ‏↓

Mds0,0

Nd0,2

 ‏↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md3,0

 ‏↓

Mds1,0

Nd1,2

 ‏↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md2,1

 ‏↓

Mds0,1

Nd0,3

 ‏↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md3,1

 ‏↓

Mds1,1

Nd1,3

 ‏↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

Matrix multiplication

Advanced and Parallel Architectures 88

Tiled matrix multiplication kernel using shared memories

__global__ void MatrixMulKernel(float* Md, float* Nd, float*

Pd, int Width)

{

1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

Matrix multiplication

Advanced and Parallel Architectures 89 2014/2015

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute
the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared
memory

9. Mds[ty][tx] = Md[Row*Width+(m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd[Col+(m*TILE_WIDTH + ty)*Width];

11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[ty][k] * Nds[k][tx];

14. synchthreads();

 }

15. Pd[Row*Width+Col] = Pvalue;

 }

Matrix multiplication

Advanced and Parallel Architectures 90 2014/2015

