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1. INTRODUCTION 

I n  th i s  pape r  we cons ider  a c o n n e c t e d  u n d i r e c t e d  g raph  wi th  N nodes  a n d  E 
edges, wi th  a d i s t inc t  f in i te  weight  ass igned to each  edge. We  descr ibe  a n  

a s y n c h r o n o u s  d i s t r i bu t ed  a lgo r i t hm which  d e t e r m i n e s  the  m i n i m u m - w e i g h t  span-  
n ing  t ree  (MST)  of the  graph.  We  a s s u m e  t h a t  each  n o d e  in i t i a l ly  knows  t he  
weight  of each  edge a d j a c e n t  to t h a t  node .  

E a c h  node  pe r fo rms  the  s ame  local  a lgor i thm,  wh ich  consis ts  of s e nd i ng  
messages  over  ad jo in ing  l inks,  wa i t ing  for i n c o m i n g  messages ,  a n d  processing.  
Messages  can  be t r a n s m i t t e d  i n d e p e n d e n t l y  in  b o t h  d i rec t ions  on  an  edge a n d  
ar r ive  af ter  a n  u n p r e d i c t a b l e  b u t  f ini te  delay,  w i t h o u t  er ror  a n d  in  sequence .  
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Distributed Algorithm for Minimum-Weight Spanning Trees 67 

After each node completes its local algorithm, it knows which adjoining edges are 
in the tree and also knows which edge leads to a particular edge designated as the 
core of the tree. 

We view the nodes in the graph as being initially asleep. One or more of the 
nodes then wake up, spontaneously or upon receiving messages from awakened 
neighbors, and then proceed with their local algorithms. 

Under these assumptions, we shall see that  the total number of messages 
exchanged by the nodes to find the MST is less than 2E + 5N log2N. Each 
message consists of at most one edge weight, one integer between zero and log2N, 
and three additional bits. 

Our algorithm is similar to an earlier algorithm described by Spira [8], which 
followed an earlier algorithm given by Dalal [1]. Spira did not analyze in detail 
the number of messages required by his algorithm, but he gave a heuristic 
argument that the expected number of messages (over randomly selected graphs) 
would grow with E and N as E + N log N. 

If the nodes of the network have distinct identities that can be ordered, then it 
is easy to extend the algorithm to the case where the edge weights are not distinct. 
One simply appends to the edge weight the identities of the two nodes joined by 
the edge, listing, say, the lower ordered node first. These appended weights have 
the same ordering as before, with ties broken by the node identities. If the nodes 
do not know the identities of their neighbors, then each node can send its identity 
over each adjoining edge, thus requiring a total of 2E extra messages. We have 
also developed another algorithm, briefly described later, that does not require 
distinct weights and thus does not require these additional 2E messages. 

If the network has neither distinct edge weights nor distinct node identities, 
then no distributed algorithm (of the type described above) exists for finding an 
MST with a bounded number of messages. This can be seen most easily for a 
three-node fully connected graph with equal-weight edges. Any two edges form 
an MST, but since the nodes obey the same algorithms, they have no way to 
choose. If nodes chose random identities, then the algorithm could be made to 
work as soon as the identities were all different, but there is no way to guarantee 
this in a finite number of choices. Naturally, the expected number of required 
choices is small, but any bounded number of messages will fail with some positive 
probability. 

Distributed MST algorithms are useful in communication networks when one 
wishes to broadcast information from one node to all other nodes and there is a 
cost associated with each channel of the network. If the cost of using a channel 
in one direction is different from that in the opposite direction, then the MST 
does not provide the desired solution, but a companion paper [3] treats this more 
general problem. In addition to the broadcast application, there are many poten- 
tial control problems for networks whose communication complexities are reduced 
by having a known spanning tree. With topology changes caused by possible 
failures in the network, it is desirable to be able to generate a spanning tree 
starting from any node or subset of nodes, and the algorithm here is as efficient 
as any we have been able to find for generating an arbitrary spanning tree. 
Finally, there are a number of applications for distributed algorithms that can 
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select the node in the network with the highest identity number. An efficient 
distributed algorithm for this problem starts with the MST algorithm and then 
uses the resulting tree to find the highest numbered node. 

2. REVIEW OF SPANNING TREES 

We assume the reader is familiar with the elementary definitions and properties 
of graphs, paths, cycles, trees, etc., which can be found, for example, in [5, 6]. 
Suppose that  each edge e of a graph has a weight w(e) associated with it. The 
weight of a tree in the graph is defined as the sum of the weights of the edges in 
the tree, and our objective is to find a spanning tree of minimum weight, that  is, 
an MST. A fragment of an MST is defined as a subtree of the MST, that  is, a 
connected set of nodes and edges of the MST. The algorithm starts with each 
individual node as a fragment and ends with the MST as a fragment. Define an 
edge as an outgoing edge of a fragment if one adjacent node is in the fragment 
and the other is not. 

PROPERTY 1. Given a fragment of an MST, let e be a minimum-weight 
outgoing edge of the fragment. Then joining e and its adjacent nonfragment 
node to the fragment yields another fragment of an MST. 

PROOF. Suppose the added edge e is not in the MST containing the original 
fragment. Then there is a cycle formed by e and some subset of the MST edges. 
At least one edge x ~ e of this cycle is also an outgoing edge of the fragment, so 
that  w(x) >_ w(e). Thus, deleting x from the MST and adding e forms a new 
spanning tree which must be minimal if the original tree was minimal. The 
original fragment with e added is a fragment of the new MST. [] 

PROPERTY 2. I f  all the edges of a connected graph have different weights, 
then the MST is unique. 

PROOF. Suppose, to the contrary, that there are two different MSTs. Let e be 
the minimum-weight edge that  is in one but not both of the trees, and let T be 
the set of edges of the MST containing e and T' be the edge set of the other 
MST. The edge set (e} U T' must contain a cycle, and at least one edge of this 
cycle, say e', is not in T (since T contains no cycles). Since the edge weights are 
all different and e' is in one but not both of the trees, w(e) < w(e'). Thus {e} U 
T' - (e'} is the edge set of a spanning tree of smaller weight than T', yielding a 
contradiction. [] 

These properties immediately suggest a general type of algorithm for finding 
the MST for a graph with different edge weights. One starts with one or more 
fragments consisting of single nodes. Using Property 1, one can enlarge these 
fragments in any order. Whenever two fragments have a common node, Property 
2 assures us that the union of these fragments is also a fragment, allowing 
fragments to be combined into larger fragments. The standard algorithms for 
generating MSTs correspond to different orders in which the above fragments 
are enlarged and combined. For example, the Prim-Dijkstra algorithm [2, 7] 
starts with a single node and successively enlarges the fragment until it spans the 
graph. The Kruskal algorithm [4] starts with all nodes as fragments and succes- 
sively extends the fragment with the smallest-weight outgoing edge, combining 
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fragments where possible. Other algorithms [1, 8, 9] start with all nodes as 
fragments, extend each fragment, then combine, then extend each of the new 
enlarged fragments, then combine again, and so forth. 

The Prim~Dijkstra and Kruskal algorithms work equally well i f some of the 
edge weights are the same. To see this, simply impose an arbitrary ordering on 
the equal-weight edges consistent with the choices made in the execution of the 
algorithms. Algorithms such as [1], [8], and [9] that extend several fragments 
without intermediate combining do not necessarily work correctly with equal 
edge weights. For example, in a three-node fully connected network with equal- 
weight edges, each node could extend with a different edge, giving rise to a cycle 
when the fragments are combined. 

In the algorithm to follow, each fragment finds its minimum-weight outgoing 
edge asynchronously with regard to other fragments, and, when this edge is 
found, the fragment attempts to combine with the fragment at the other end of 
the edge. How and when this combination takes place depends on the levels of 
the two fragments, which depend in turn on previous fragment combinations. 
Specifically, a fragment containing only a single node is defined to be at level 0. 
Suppose a given fragment F is at level L >_ 0 and the fragment F' at the other end 
of F ' s  minimum-weight outgoing edge is at level L'. If L < L', then fragment F 
is immediately absorbed as part of fragment F', and the expanded fragment is at 
level L'. If L = L'  and fragments F and F '  have the same minimum-weight 
outgoing edge, then the fragments combine immediately into a new fragment at 
level L + 1; the combining edge is then called the core of the new fragment. In all 
other cases, fragment F simply waits until fragment F '  reaches a high enough 
level for combination under the above rules. 

Figure 1 illustrates these rules. Fragment F is a level 1 fragment formed when 
nodes 1 and 2 combine on their common minimum-weight edge, and node 3 and 
its minimum-weight edge are then absorbed. Fragments F and F' later combine 
on their minimum-weight edge to form a level 2 fragment, and node 4 is later 
absorbed. Depending on the timing, it would also be possible for node 4 to be 
absorbed into fragment F before the formation of the level 2 fragment. 

We show later, after describing more of the algorithm, that the waiting in the 
above rules cannot cause a deadlock. The reason for the waiting is that the 
communication required for a fragment to find its minimum-weight edge is 
proportional to the fragment size, and thus communication is reduced by small 
fragments joining into large ones rather than vice versa. 

3. DESCRIPTION OF THE DISTRIBUTED ALGORITHM 

We start by describing how a fragment finds its minimum-weight outgoing edge. 
First consider the trivial special case of a zero-level fragment {i.e., a single node). 
Initially, each node is in a quiescent state called Sleeping. There are three 
possible node states: the initial state Sleeping, the state Find while participating 
in a fragment's search for the minimum-weight outgoing edge, and the state 
Found at other times. When a sleeping node either spontaneously awakens to 
initiate the overall algorithm or is awakened by the receipt of any algorithm 
message from another node, the node first chooses its minimum-weight adjacent 
edge, marks this edge as a branch of the MST, sends a message called Connect 
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\ \ FRAGMENT F' / (LEVEL 2) // 

Fig. 1. Fragments  and cores. 

over this edge, and goes into the state Found, waiting for a response from the 
fragment at the other end of the selected edge. 

Now consider the problem of how the nodes in a nonzero-level fragment 
cooperate to find the minimum-weight outgoing edge. Suppose a new fragment at 
level L has just been formed by the combination of two level (L - 1) fragments 
with the same minimum-weight outgoing edge, which becomes the core of the 
new fragment. The weight of this core edge is used as the identity of the fragment. 

The two nodes adjacent to the core start the new cycle by broadcasting an 
Initiate message to the other nodes of the fragment. This message is sent outward 
on the fragment branches and is relayed outward by the intermediate nodes on 
the fragment. The initiate message carries the new fragment level and identity as 
arguments, providing all nodes in the fragment with this information. The initiate 
message also contains the argument  Find, which places the node in the Find 
state as discussed later. If other fragments at level (L - 1) are waiting to connect 
into the nodes of the new level L fragment, the initiate message is passed on to 
them also, putting them into the new fragment. The initiate message is also 
passed on to level (L - 1) fragments waiting to connect into these new nodes, and 
so forth. 

When a node receives this initiate message, it starts to find its minimum-weight 
outgoing edge. The difficulty here is that  a node does not know which edges are 
outgoing. This difficulty is resolved as follows: Each node classifies each of its 
adjacent edges into one of three possible states: Branch, if the edge is a branch 
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in the current fragment; Rejected, if the edge is not a branch but has been 
discovered to join two nodes of the fragment; and Basic if the edge is neither a 
branch nor rejected. 

In order to find its minimum-weight outgoing edge, a node picks the minimum- 
weight Basic edge and sends a Test message on it. The test message carries the 
fragment identity and level as arguments. When a node receives such a test 
message, it checks whether or not its own fragment identity agrees with that  of 
the test message. If the identities agree, then (subject to a slight exception) the 
node sends the message Reject back to the sender of the test message, and both 
nodes put the edge in the Rejected state. The node sending the test message then 
continues by testing its next-best edge. The exception above is that, if a node 
sends and then receives a test message with the same identity on the same edge, 
it simply rejects the edge without the reject message; this reduces the communi- 
cation complexity slightly. 

If the node receiving a test message has a different identity from that of the 
test message, and if the receiving node's fragment level is greater than or equal 
to that of the test message, then the message Accept is sent back to the sending 
node, certifying that the edge is an outgoing edge from the sending node's 
fragment. If, on the other hand, the receiving node's fragment level is less than 
that of the test message, then the receiving node delays making any response 
until its own level increases sufficiently. The major reason for this delay feature 
is that, after a lower level fragroent combines into a higher level fragment, the 
outgoing nodes of the fragment do not find out about the change for an uncertain 
period (in fact, until they receive a new Initiate message). An important property 
of the algorithm is that the fragment identity of a node changes when and only 
when the level increases; furthermore, a given fragment identity can occur at only 
one level. These properties are intuitively clear from the preceding discussion of 
how fragments combine and can be established rigorously by induction on any 
allowable time ordering of events in the algorithm. From these properties of 
fragments, we see that when a node A sends an Accept message in response to 
B's Test message, then the fragment identity of A differs, and will continue to 
differ, from B's current fragment identity. 

We have just described how each node in a fragment eventually finds its 
minimum-weight outgoing edge, if any. The nodes must now cooperate, by 
sending Report messages, to find the minimum-weight outgoing edge from the 
entire fragment; if no node has outgoing edges, the algorithm is complete, and the 
fragment is the MST. In particular, each leaf node of the fragment, that is, each 
node adjacent to only one fragment branch, sends the message Report(W) on its 
inbound branch; W is the weight of the minimum-weight outgoing edge from the 
node, and W is infinity if there are no outgoing edges. Similarly, each interior 
node of the fragment waits until it has both found its own minimum-weight 
outgoing edge and received messages on all outbound fragment branches. The 
node then denotes the edge (either outgoing edge or outbound fragment branch) 
on which the smallest of these weights, W, was found as best-edge, and the node 
sends Report(W) on its inbound branch. When a node sends the Report message, 
it also goes to the state Found, indicating the completion of its role in finding the 
fragment's minimum-weight outgoing edge. Eventually, the two nodes adjacent 
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to the core send report messages on the core branch itself, allowing each of these 
nodes to determine both the weight of the minimum outgoing edge and the side 
of the core on which this edge lies. 

After the two core nodes have exchanged Report messages, the best edges 
saved by the fragment nodes make it possible to trace the path from the core to 
the node having the minimum-weight outgoing edge. The message Change-core 
is then sent over each branch of this path, and the inbound edge for each of these 
nodes is changed to correspond to best-edge. When this message reaches the node 
with the minimum-weight outgoing edge, the inbound edges form a rooted tree, 
rooted at this node. Finally, this node sends the message Connect(L) over the 
minimum-weight outgoing edge; L is the level of the fragment. 

If two fragments at level L have the same minimum-weight outgoing edge, then 
each sends the message Connect(L) over the edge, one in each direction, and this 
causes the edge to become the core of a level (L + 1) fragment and causes new 
initiate messages with the new level and fragment identity to be sent out. This 
rule for forming new fragments ensures that  a level (L + 1) fragment always 
contains at least two level L fragments (L _> 0); it follows that  level L fragments 
contain at least 2 L nodes, and thus that log2N is an upper bound on fragment 
levels. 

Finally, consider what happens when a connect message from a node n, in a 
low-level fragment with level L and identity F, reaches a node n' in a higher level 
fragment with level L '  and identity F'. 

Due to our strategy of never making a low-level fragment wait, node n '  
immediately sends an initiate message with identity and level parameters F' and 
L '  to n. If node n' has not yet sent its report message at the given level, fragment 
F simply joins fragment F '  and participates in finding the minimum-weight 
outgoing edge from the enlarged fragment. If, on the other hand, node n '  has 
already sent its report message, then we can deduce that  an outgoing edge from 
node n '  has a lower weight than the minimum-weight outgoing edge from F. This 
eliminates the necessity for F to join the search for the minimum-weight outgoing 
edge. These two cases are distinguished by sending the node state, either Find or 
Found, in the initiate message. The nodes in fragment F go into state Find or 
Found depending on this parameter of the initiate message, and they send Test 
messages only in the Find state. 

We now outline a proof that the algorithm is correct. In view of Properties 1 
and 2 it is sufficient to verify that  the algorithm does indeed find minimum- 
weight outgoing edges from fragments and that  the waiting does not lead to 
deadlocks. The previous description of the algorithm should convince the reader 
that  the edge on which a message Connect(L) is sent is the minimum-weight 
outgoing edge for the level L fragment consisting of all nodes that  received the 
initiate message with the given identity (note that  the fragment corresponding to 
a given fragment identity can grow as lower level fragments join the given 
fragment). 

To show that deadlocks do not exist, consider the set of fragments in existence 
at any given time, excluding zero-level fragments consisting of sleeping nodes. 
Assume the algorithm has started but has not finished, so that  the above set of 
fragments is nonempty and each fragment has a minimum-weight outgoing edge. 
Out of the lowest level fragments in the set, consider one with the smallest 
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minimum-weight  outgoing edge. Any test  message from tha t  f ragment  ei ther  will 
wake up a sleeping zero-level f ragment  or will be responded to wi thout  waiting. 
Similarly, a connect  message from tha t  f ragment  ei ther  will wake up a sleeping 
zero-level fragment,  or will go to a higher level f ragment  (with an immediate  
initiate response), or will go to a f ragment  of the same level with the same 
minimum-weight  outgoing edge, leading to a new higher level fragment.  Since 
the assumed system state was arbitrary,  we see tha t  deadlocks do not  exist. 

The  program in the appendix has also been tested (using a F O R T R A N  
implementat ion) on a variety of network topologies. 

We now briefly describe a modification of the algori thm tha t  can be used for 
nondist inct  edge weights and tha t  does not  require 2E extra messages for 
appending the adjacent  node identities to the edge weight. In the modification, 
f ragments  are identified by node identities, which are ordered and distinct. A 
minimum-weight  outgoing edge from a fragment is found as before, and a connect  
message is sent over tha t  edge as before. Th e  new feature is tha t  a connect  
message on edge e from fragment  F to F '  is later  canceled if (1) bo th  fragments  
are at  the same level and F > F ' ;  (2) some fragment  F "  a t  the same level has sent 
a connect  message to F and F"  < F; (3) an initiate message has not  already been 
sent back on edge e. When a connect  message is canceled, the node tha t  sent it 
increases its level and sends out  a new initiate message, in this case joining 
fragments F and F". 

4. COMMUNICATION COST ANALYSIS 

We determine here  an upper  bound on the number  of messages exchanged during 
the execution of the algorithm. Note tha t  the most  complex message contains 
one edge weight, one level between zero and log N, and a few bits to indicate 
message type. 

Since an edge can be rejected only once, and each rejection requires two 
messages, there  are at  most  2E test  or reject  messages leading to rejections. 

Next,  while a node is at  a given level except the zeroth and the last, it can 
receive at  most  one initiate and one accept message. It  can t ransmit  at  most  one 
successful test  message, one repor t  message, and one change-root  or connect  
message. Since log2N is an upper  bound on the highest level, a node can go 
through at  most  ( - 1  + log N)  levels not  counting the zeroth and last, and this 
accounts for at  most  5 N ( - 1  + log N) messages. 

At level zero, each node can receive at most  one initiate message and can 
t ransmit  at most  one connect  message. At the last level, each node can send at  
most  one repor t  message. This  adds less than  5N messages to our grand total, 
which becomes 5N log N + 2E. 

Note  that ,  if the number  of nodes in the graph is initially unknown, as we have 
implicitly assumed, then  no distr ibuted algorithm can find the M S T  with fewer 
than  E messages; if there  is an edge over which no message is sent, then  there  
might  have been a node at  the center  of tha t  edge, causing the algori thm to fail. 

5. TIMING ANALYSIS 

Although it appears tha t  the algorithm typically allows a large amount  of 
parallelism in messages, it is not  difficult to find examples such as Figure 2 in 
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3§ 

j - i  -I 
1 W ( i , j )  = j +  • j > i  '~ j ' 

~ c ~  W ( i , S )  = v/-~- + i 

S originally awakened 

Fig. 2. Example  when algorithm requires N ( N  - 1) message t ime units. 

which most of the messages are sent sequentially. In particular, if node S originally 
wakes up, each node j sequentially both sends a test message to each i _ j - 2 
and receives a reject before any j '  > j is awakened. This leads to N ( N  - 1) 
sequential messages. 

If time is important, it is preferable to awaken all nodes originally; this can be 
done in at most N - 1 time units assuming each message transmission requires 
at most one time unit. We now show that, with this assumption of initial 
awakening, the algorithm requires at most 5N log2N time units. Note first that, 
by time N, each node will be awakened and will have sent a connect message. By 
time 2N, each node must be at level one through the propagation of initiate 
signals. 

We proceed by induction on the level numbers, showing that  it takes at most 
51N - 3 N  time units until all nodes are at level 1. This is true for 1 = 1; assume it 
true for 1. At level l, each node can send at most N test messages which will be 
answered before time 51N - N .  The propagation of the report, change-root and 
connect, and initiate messages can take at most 3N units, so that  by time 
5 ( / +  1)N - 3N all nodes are at level l + 1. At the highest level, 1 __ log2N, 
only test, reject, and report messages are used; so the algorithm is complete by 
time 5N log2N. 

A worst-case O (N log N) is possible, as is shown by the example in Figure 3, 
where the handle and the head both contain N / 2  nodes. If the edge weights in 
the handle increase as one gets away from the head, then all nodes in the handle 
will be in the same fragment at level one. If processing the head requires log 
N / 2  levels and if at each level a fragment joins the handle, which can happen, 
then the time until completion will be O (N log N). 

APPENDIX 

The algorithm to follow is obeyed by each node and consists of a list of the 
responses to each type of message that can be generated. In addition, the response 
to a spontaneous awakening of the node is given. Each node is assumed to queue 
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m 

N Nodes 

Fig. 3. Example when O(N 
log2N) message t ime units are re- 
quired with initial general awak- 
ening. 

the incoming messages and to respond to them in first-come, first-served order. 
One particular response is to place the message back on the end of the queue for 
delayed servicing, but, aside from this, each response is completed before the next 
is started. Each node, of course, maintains its own set of variables, consisting of 
its state (denoted by S N  and assuming possible values Sleeping, Find,  and 
Found)  and the state of the adjacent edges. The state of edge j is denoted by 
S E ( j )  and can assume the possible values Basic,  Branch ,  and Rejected.  It is 
possible for the edge states at the two nodes adjacent to the edge to be temporarily 
inconsistent. Initially for each node, S N  = Sleeping  and S E  ( j )  = Bas ic  for each 
adjacent edge j. Each node also maintains a fragment identity FN,  a level L N ,  
and variables best-edge, best-wt, test-edge, in-branch, and f ind-count,  all of whose 
initial values are immaterial. There is also an initially empty first-come first- 
served queue for incoming messages. Finally, the weight of each adjacent edge j 
is denoted w (j). 

The Algorithm (As Executed at Each Node) 

(1) Response to spontaneous awakening (can occur only at a node in the sleeping state) 
execute procedure wakeup 

(2) procedure wakeup 
begin let m be adjacent edge of minimum weight; 

SE (m ) (--- Branch; 
L N  (-- 0; 
SN (-- Found; 
Find-count (-- 0; 
send  Connect(O) on edge m 

end 

(3) Response to receipt of Connect(L) on edgej 
begin if SN = Sleeping then execute procedure wakeup; 

if L < L N  
t h e n  begin SE (j) (--- Branch; 

s e n d  Initiate(LN, FN, SN) on edge j; 
if SN = Find t h e n  

find-count .-- find-count + 1 
end  

else if SE(j )  = Basic 
t h e n  place received message on end of queue 
else send Init iate(LN + 1, w(j ) ,  Find) on edgej 

end 
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(4) Response to receipt of Initiate (L, F,  S) on edge j 
b e g i n  L N  *-- L; F N  *-- F; S N  *-- S; in-branch ,,--j; 

best-edge *-- nil; best-wt ,,-- ~; 
fo r  a l l  i ~ j  such tha t  SE(i )  = Branch 

do b e g i n  s e n d  Initiate(L, F, S) on edge i; 
i f  S = Find t h e n  find-count ~-- find-count + 1 

end;  
i f  S = Find t h e n  e x e c u t e  p r o c e d u r e  test 

e n d  

(5) p r o c e d u r e  test 
i f  there  are adjacent  edges in the state Basic 

t h e n  b e g i n  test-edge ~-- the minimum-weight adjacent  edge in state Basic; 
s e n d  Test(LN, FN)  on test-edge 

e n d  
e l se  b e g i n  test-edge *-- nil; e x e c u t e  p r o c e d u r e  report e n d  

(6) Response to receipt  of Test(L, F) on e d g e j  
b e g i n  i f  S N  = Sleeping t h e n  e x e c u t e  p r o c e d u r e  wakeup; 

i f  L > L N  t h e n  place received message on end of queue 
e l se  i f  F ~ F N  t h e n  s e n d  Accept on edge j 

e l se  b e g i n  i f  SE (j)  = Basic t h e n  SE ( j)  ~ Rejected; 
i f  test-edge ~ j t h e n  s e n d  Reject on edge j 

e l se  e x e c u t e  p r o c e d u r e  test 
end  
e n d  

(7) Response to receipt of Accept on edge j 
b e g i n  test-edge ~- nil; 

i f  w ( j )  < best-wt 
t h e n  b e g i n  best-edge ~-j;  best-wt *- w ( j )  end;  

e x e c u t e  p r o c e d u r e  report 
e n d  

(8) Response to receipt of Reject on edge j 
b e g i n  i f  SE (j)  = Basic t h e n  SE (j)  ~-- Rejected; 

e x e c u t e  p r o c e d u r e  test 
e n d  

(9) p r o c e d u r e  report 
i f  find-count = 0 a n d  test-edge = nil 

t h e n  b e g i n  S N  *-- Found; 
s e n d  Report(best-wt) on in-branch 

e n d  

(10) Response to receipt of Report(w) on e d g e j  
i f j  ~ in-branch 

t h e n  b e g i n  find-count ~- find-count - 1 
i f  w < best-wt t h e n  b e g i n  best-wt ,,-- w; best-edge ,~--j end;  
e x e c u t e  p r o c e d u r e  report 

e n d  
e l se  i f  S N  = Find t h e n  place received message on end of queue 

e lse  i f  w > best-wt 
t h e n  e x e c u t e  p r o c e d u r e  change-root 
else  i f  w = best-wt = ~ t h e n  h a l t  

(11) p r o c e d u r e  change-root 
i f  SE (best-edge) = Branch 

t h e n  s e n d  Change-root on best-edge 
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e lse  b e g i n  s e n d  Connect(LN) on best-edge; 
S E  (best-edge) *- Branch 

end 

(12) Response to receipt of Change-root 

execute  procedure  change-root 
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