
A Distributed Algorithm for
Spanning Trees

R. G. GALLAGER, P. A. HUMBLET, and P.
Massachusetts Institute of Technology

Minimum-Weight

M. SPIRA

A distributed algorithm is presented that constructs the minimum-weight spanning tree in a connected
undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing
initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange
messages with neighbors until the tree is constructed. The total number of messages required for a
graph of N nodes and E edges is at most 5N log2N + 2E, and a message contains at most one edge
weight plus log28N bits. The algorithm can be initiated spontaneously at any node or at any subset of
nodes.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design--Distributed networks; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph
Theory--trees

General Terms: Algorithms

Additional Key Words and Phrases: Distributed algorithms, communication complexity, shortest
spanning trees

1. INTRODUCTION

I n th i s pape r we cons ider a c o n n e c t e d u n d i r e c t e d g raph wi th N nodes a n d E
edges, wi th a d i s t inc t f in i te weight ass igned to each edge. We descr ibe a n

a s y n c h r o n o u s d i s t r i bu t ed a lgo r i t hm which d e t e r m i n e s the m i n i m u m - w e i g h t span-
n ing t ree (MST) of the graph. We a s s u m e t h a t each n o d e in i t i a l ly knows t he
weight of each edge a d j a c e n t to t h a t node .

E a c h node pe r fo rms the s ame local a lgor i thm, wh ich consis ts of s e nd i ng
messages over ad jo in ing l inks, wa i t ing for i n c o m i n g messages , a n d processing.
Messages can be t r a n s m i t t e d i n d e p e n d e n t l y in b o t h d i rec t ions on an edge a n d
ar r ive af ter a n u n p r e d i c t a b l e b u t f ini te delay, w i t h o u t er ror a n d in sequence .

This research was conducted at the Massachusetts Institute of Technology Laboratory for Information
and Decision Systems with partial support provided by the National Science Foundation under grant
ENG-77-19971 and by the Advanced Research Projects Agency under grant ONR/N00014-75-C-1183.
Authors' addresses: R. G. Gallager, Room 35-206, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139; P. A. Humblet, Room 35-203, Labo-
ratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139; P. M. Spira, Apple Computer Company, 10260 Bandley Drive, Cupertino, CA 95014.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/0100-0066 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January]983, Pages 66-77.

Distributed Algorithm for Minimum-Weight Spanning Trees 67

After each node completes its local algorithm, it knows which adjoining edges are
in the tree and also knows which edge leads to a particular edge designated as the
core of the tree.

We view the nodes in the graph as being initially asleep. One or more of the
nodes then wake up, spontaneously or upon receiving messages from awakened
neighbors, and then proceed with their local algorithms.

Under these assumptions, we shall see that the total number of messages
exchanged by the nodes to find the MST is less than 2E + 5N log2N. Each
message consists of at most one edge weight, one integer between zero and log2N,
and three additional bits.

Our algorithm is similar to an earlier algorithm described by Spira [8], which
followed an earlier algorithm given by Dalal [1]. Spira did not analyze in detail
the number of messages required by his algorithm, but he gave a heuristic
argument that the expected number of messages (over randomly selected graphs)
would grow with E and N as E + N log N.

If the nodes of the network have distinct identities that can be ordered, then it
is easy to extend the algorithm to the case where the edge weights are not distinct.
One simply appends to the edge weight the identities of the two nodes joined by
the edge, listing, say, the lower ordered node first. These appended weights have
the same ordering as before, with ties broken by the node identities. If the nodes
do not know the identities of their neighbors, then each node can send its identity
over each adjoining edge, thus requiring a total of 2E extra messages. We have
also developed another algorithm, briefly described later, that does not require
distinct weights and thus does not require these additional 2E messages.

If the network has neither distinct edge weights nor distinct node identities,
then no distributed algorithm (of the type described above) exists for finding an
MST with a bounded number of messages. This can be seen most easily for a
three-node fully connected graph with equal-weight edges. Any two edges form
an MST, but since the nodes obey the same algorithms, they have no way to
choose. If nodes chose random identities, then the algorithm could be made to
work as soon as the identities were all different, but there is no way to guarantee
this in a finite number of choices. Naturally, the expected number of required
choices is small, but any bounded number of messages will fail with some positive
probability.

Distributed MST algorithms are useful in communication networks when one
wishes to broadcast information from one node to all other nodes and there is a
cost associated with each channel of the network. If the cost of using a channel
in one direction is different from that in the opposite direction, then the MST
does not provide the desired solution, but a companion paper [3] treats this more
general problem. In addition to the broadcast application, there are many poten-
tial control problems for networks whose communication complexities are reduced
by having a known spanning tree. With topology changes caused by possible
failures in the network, it is desirable to be able to generate a spanning tree
starting from any node or subset of nodes, and the algorithm here is as efficient
as any we have been able to find for generating an arbitrary spanning tree.
Finally, there are a number of applications for distributed algorithms that can

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

68 R.G. Gallager, P. A. Humblet, and P. M. Spira

select the node in the network with the highest identity number. An efficient
distributed algorithm for this problem starts with the MST algorithm and then
uses the resulting tree to find the highest numbered node.

2. REVIEW OF SPANNING TREES

We assume the reader is familiar with the elementary definitions and properties
of graphs, paths, cycles, trees, etc., which can be found, for example, in [5, 6].
Suppose that each edge e of a graph has a weight w(e) associated with it. The
weight of a tree in the graph is defined as the sum of the weights of the edges in
the tree, and our objective is to find a spanning tree of minimum weight, that is,
an MST. A fragment of an MST is defined as a subtree of the MST, that is, a
connected set of nodes and edges of the MST. The algorithm starts with each
individual node as a fragment and ends with the MST as a fragment. Define an
edge as an outgoing edge of a fragment if one adjacent node is in the fragment
and the other is not.

PROPERTY 1. Given a fragment of an MST, let e be a minimum-weight
outgoing edge of the fragment. Then joining e and its adjacent nonfragment
node to the fragment yields another fragment of an MST.

PROOF. Suppose the added edge e is not in the MST containing the original
fragment. Then there is a cycle formed by e and some subset of the MST edges.
At least one edge x ~ e of this cycle is also an outgoing edge of the fragment, so
that w(x) >_ w(e). Thus, deleting x from the MST and adding e forms a new
spanning tree which must be minimal if the original tree was minimal. The
original fragment with e added is a fragment of the new MST. []

PROPERTY 2. I f all the edges of a connected graph have different weights,
then the MST is unique.

PROOF. Suppose, to the contrary, that there are two different MSTs. Let e be
the minimum-weight edge that is in one but not both of the trees, and let T be
the set of edges of the MST containing e and T' be the edge set of the other
MST. The edge set (e} U T' must contain a cycle, and at least one edge of this
cycle, say e', is not in T (since T contains no cycles). Since the edge weights are
all different and e' is in one but not both of the trees, w(e) < w(e'). Thus {e} U
T' - (e'} is the edge set of a spanning tree of smaller weight than T', yielding a
contradiction. []

These properties immediately suggest a general type of algorithm for finding
the MST for a graph with different edge weights. One starts with one or more
fragments consisting of single nodes. Using Property 1, one can enlarge these
fragments in any order. Whenever two fragments have a common node, Property
2 assures us that the union of these fragments is also a fragment, allowing
fragments to be combined into larger fragments. The standard algorithms for
generating MSTs correspond to different orders in which the above fragments
are enlarged and combined. For example, the Prim-Dijkstra algorithm [2, 7]
starts with a single node and successively enlarges the fragment until it spans the
graph. The Kruskal algorithm [4] starts with all nodes as fragments and succes-
sively extends the fragment with the smallest-weight outgoing edge, combining
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

Distributed Algorithm for Minimum-Weight Spanning Trees • 69

fragments where possible. Other algorithms [1, 8, 9] start with all nodes as
fragments, extend each fragment, then combine, then extend each of the new
enlarged fragments, then combine again, and so forth.

The Prim~Dijkstra and Kruskal algorithms work equally well i f some of the
edge weights are the same. To see this, simply impose an arbitrary ordering on
the equal-weight edges consistent with the choices made in the execution of the
algorithms. Algorithms such as [1], [8], and [9] that extend several fragments
without intermediate combining do not necessarily work correctly with equal
edge weights. For example, in a three-node fully connected network with equal-
weight edges, each node could extend with a different edge, giving rise to a cycle
when the fragments are combined.

In the algorithm to follow, each fragment finds its minimum-weight outgoing
edge asynchronously with regard to other fragments, and, when this edge is
found, the fragment attempts to combine with the fragment at the other end of
the edge. How and when this combination takes place depends on the levels of
the two fragments, which depend in turn on previous fragment combinations.
Specifically, a fragment containing only a single node is defined to be at level 0.
Suppose a given fragment F is at level L >_ 0 and the fragment F' at the other end
of F ' s minimum-weight outgoing edge is at level L'. If L < L', then fragment F
is immediately absorbed as part of fragment F', and the expanded fragment is at
level L'. If L = L' and fragments F and F ' have the same minimum-weight
outgoing edge, then the fragments combine immediately into a new fragment at
level L + 1; the combining edge is then called the core of the new fragment. In all
other cases, fragment F simply waits until fragment F ' reaches a high enough
level for combination under the above rules.

Figure 1 illustrates these rules. Fragment F is a level 1 fragment formed when
nodes 1 and 2 combine on their common minimum-weight edge, and node 3 and
its minimum-weight edge are then absorbed. Fragments F and F' later combine
on their minimum-weight edge to form a level 2 fragment, and node 4 is later
absorbed. Depending on the timing, it would also be possible for node 4 to be
absorbed into fragment F before the formation of the level 2 fragment.

We show later, after describing more of the algorithm, that the waiting in the
above rules cannot cause a deadlock. The reason for the waiting is that the
communication required for a fragment to find its minimum-weight edge is
proportional to the fragment size, and thus communication is reduced by small
fragments joining into large ones rather than vice versa.

3. DESCRIPTION OF THE DISTRIBUTED ALGORITHM

We start by describing how a fragment finds its minimum-weight outgoing edge.
First consider the trivial special case of a zero-level fragment {i.e., a single node).
Initially, each node is in a quiescent state called Sleeping. There are three
possible node states: the initial state Sleeping, the state Find while participating
in a fragment's search for the minimum-weight outgoing edge, and the state
Found at other times. When a sleeping node either spontaneously awakens to
initiate the overall algorithm or is awakened by the receipt of any algorithm
message from another node, the node first chooses its minimum-weight adjacent
edge, marks this edge as a branch of the MST, sends a message called Connect

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

70 R.G. Gallager, P. A. Humblet, and P. M. Spira

\ \ FRAGMENT F' / (LEVEL 2) //

Fig. 1. Fragments and cores.

over this edge, and goes into the state Found, waiting for a response from the
fragment at the other end of the selected edge.

Now consider the problem of how the nodes in a nonzero-level fragment
cooperate to find the minimum-weight outgoing edge. Suppose a new fragment at
level L has just been formed by the combination of two level (L - 1) fragments
with the same minimum-weight outgoing edge, which becomes the core of the
new fragment. The weight of this core edge is used as the identity of the fragment.

The two nodes adjacent to the core start the new cycle by broadcasting an
Initiate message to the other nodes of the fragment. This message is sent outward
on the fragment branches and is relayed outward by the intermediate nodes on
the fragment. The initiate message carries the new fragment level and identity as
arguments, providing all nodes in the fragment with this information. The initiate
message also contains the argument Find, which places the node in the Find
state as discussed later. If other fragments at level (L - 1) are waiting to connect
into the nodes of the new level L fragment, the initiate message is passed on to
them also, putting them into the new fragment. The initiate message is also
passed on to level (L - 1) fragments waiting to connect into these new nodes, and
so forth.

When a node receives this initiate message, it starts to find its minimum-weight
outgoing edge. The difficulty here is that a node does not know which edges are
outgoing. This difficulty is resolved as follows: Each node classifies each of its
adjacent edges into one of three possible states: Branch, if the edge is a branch

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

Distributed Algorithm for Minimum-Weight Spanning Trees 71

in the current fragment; Rejected, if the edge is not a branch but has been
discovered to join two nodes of the fragment; and Basic if the edge is neither a
branch nor rejected.

In order to find its minimum-weight outgoing edge, a node picks the minimum-
weight Basic edge and sends a Test message on it. The test message carries the
fragment identity and level as arguments. When a node receives such a test
message, it checks whether or not its own fragment identity agrees with that of
the test message. If the identities agree, then (subject to a slight exception) the
node sends the message Reject back to the sender of the test message, and both
nodes put the edge in the Rejected state. The node sending the test message then
continues by testing its next-best edge. The exception above is that, if a node
sends and then receives a test message with the same identity on the same edge,
it simply rejects the edge without the reject message; this reduces the communi-
cation complexity slightly.

If the node receiving a test message has a different identity from that of the
test message, and if the receiving node's fragment level is greater than or equal
to that of the test message, then the message Accept is sent back to the sending
node, certifying that the edge is an outgoing edge from the sending node's
fragment. If, on the other hand, the receiving node's fragment level is less than
that of the test message, then the receiving node delays making any response
until its own level increases sufficiently. The major reason for this delay feature
is that, after a lower level fragroent combines into a higher level fragment, the
outgoing nodes of the fragment do not find out about the change for an uncertain
period (in fact, until they receive a new Initiate message). An important property
of the algorithm is that the fragment identity of a node changes when and only
when the level increases; furthermore, a given fragment identity can occur at only
one level. These properties are intuitively clear from the preceding discussion of
how fragments combine and can be established rigorously by induction on any
allowable time ordering of events in the algorithm. From these properties of
fragments, we see that when a node A sends an Accept message in response to
B's Test message, then the fragment identity of A differs, and will continue to
differ, from B's current fragment identity.

We have just described how each node in a fragment eventually finds its
minimum-weight outgoing edge, if any. The nodes must now cooperate, by
sending Report messages, to find the minimum-weight outgoing edge from the
entire fragment; if no node has outgoing edges, the algorithm is complete, and the
fragment is the MST. In particular, each leaf node of the fragment, that is, each
node adjacent to only one fragment branch, sends the message Report(W) on its
inbound branch; W is the weight of the minimum-weight outgoing edge from the
node, and W is infinity if there are no outgoing edges. Similarly, each interior
node of the fragment waits until it has both found its own minimum-weight
outgoing edge and received messages on all outbound fragment branches. The
node then denotes the edge (either outgoing edge or outbound fragment branch)
on which the smallest of these weights, W, was found as best-edge, and the node
sends Report(W) on its inbound branch. When a node sends the Report message,
it also goes to the state Found, indicating the completion of its role in finding the
fragment's minimum-weight outgoing edge. Eventually, the two nodes adjacent

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

72 R.G. Gallager, P. A. Humblet, and P. M. Spira

to the core send report messages on the core branch itself, allowing each of these
nodes to determine both the weight of the minimum outgoing edge and the side
of the core on which this edge lies.

After the two core nodes have exchanged Report messages, the best edges
saved by the fragment nodes make it possible to trace the path from the core to
the node having the minimum-weight outgoing edge. The message Change-core
is then sent over each branch of this path, and the inbound edge for each of these
nodes is changed to correspond to best-edge. When this message reaches the node
with the minimum-weight outgoing edge, the inbound edges form a rooted tree,
rooted at this node. Finally, this node sends the message Connect(L) over the
minimum-weight outgoing edge; L is the level of the fragment.

If two fragments at level L have the same minimum-weight outgoing edge, then
each sends the message Connect(L) over the edge, one in each direction, and this
causes the edge to become the core of a level (L + 1) fragment and causes new
initiate messages with the new level and fragment identity to be sent out. This
rule for forming new fragments ensures that a level (L + 1) fragment always
contains at least two level L fragments (L _> 0); it follows that level L fragments
contain at least 2 L nodes, and thus that log2N is an upper bound on fragment
levels.

Finally, consider what happens when a connect message from a node n, in a
low-level fragment with level L and identity F, reaches a node n' in a higher level
fragment with level L ' and identity F'.

Due to our strategy of never making a low-level fragment wait, node n '
immediately sends an initiate message with identity and level parameters F' and
L ' to n. If node n' has not yet sent its report message at the given level, fragment
F simply joins fragment F ' and participates in finding the minimum-weight
outgoing edge from the enlarged fragment. If, on the other hand, node n ' has
already sent its report message, then we can deduce that an outgoing edge from
node n ' has a lower weight than the minimum-weight outgoing edge from F. This
eliminates the necessity for F to join the search for the minimum-weight outgoing
edge. These two cases are distinguished by sending the node state, either Find or
Found, in the initiate message. The nodes in fragment F go into state Find or
Found depending on this parameter of the initiate message, and they send Test
messages only in the Find state.

We now outline a proof that the algorithm is correct. In view of Properties 1
and 2 it is sufficient to verify that the algorithm does indeed find minimum-
weight outgoing edges from fragments and that the waiting does not lead to
deadlocks. The previous description of the algorithm should convince the reader
that the edge on which a message Connect(L) is sent is the minimum-weight
outgoing edge for the level L fragment consisting of all nodes that received the
initiate message with the given identity (note that the fragment corresponding to
a given fragment identity can grow as lower level fragments join the given
fragment).

To show that deadlocks do not exist, consider the set of fragments in existence
at any given time, excluding zero-level fragments consisting of sleeping nodes.
Assume the algorithm has started but has not finished, so that the above set of
fragments is nonempty and each fragment has a minimum-weight outgoing edge.
Out of the lowest level fragments in the set, consider one with the smallest
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

Distributed Algorithm for Minimum-Weight Spanning Trees 73

minimum-weight outgoing edge. Any test message from tha t f ragment ei ther will
wake up a sleeping zero-level f ragment or will be responded to wi thout waiting.
Similarly, a connect message from tha t f ragment ei ther will wake up a sleeping
zero-level fragment, or will go to a higher level f ragment (with an immediate
initiate response), or will go to a f ragment of the same level with the same
minimum-weight outgoing edge, leading to a new higher level fragment. Since
the assumed system state was arbitrary, we see tha t deadlocks do not exist.

The program in the appendix has also been tested (using a F O R T R A N
implementat ion) on a variety of network topologies.

We now briefly describe a modification of the algori thm tha t can be used for
nondist inct edge weights and tha t does not require 2E extra messages for
appending the adjacent node identities to the edge weight. In the modification,
f ragments are identified by node identities, which are ordered and distinct. A
minimum-weight outgoing edge from a fragment is found as before, and a connect
message is sent over tha t edge as before. Th e new feature is tha t a connect
message on edge e from fragment F to F ' is later canceled if (1) bo th fragments
are at the same level and F > F ' ; (2) some fragment F " a t the same level has sent
a connect message to F and F" < F; (3) an initiate message has not already been
sent back on edge e. When a connect message is canceled, the node tha t sent it
increases its level and sends out a new initiate message, in this case joining
fragments F and F".

4. COMMUNICATION COST ANALYSIS

We determine here an upper bound on the number of messages exchanged during
the execution of the algorithm. Note tha t the most complex message contains
one edge weight, one level between zero and log N, and a few bits to indicate
message type.

Since an edge can be rejected only once, and each rejection requires two
messages, there are at most 2E test or reject messages leading to rejections.

Next, while a node is at a given level except the zeroth and the last, it can
receive at most one initiate and one accept message. It can t ransmit at most one
successful test message, one repor t message, and one change-root or connect
message. Since log2N is an upper bound on the highest level, a node can go
through at most (- 1 + log N) levels not counting the zeroth and last, and this
accounts for at most 5 N (- 1 + log N) messages.

At level zero, each node can receive at most one initiate message and can
t ransmit at most one connect message. At the last level, each node can send at
most one repor t message. This adds less than 5N messages to our grand total,
which becomes 5N log N + 2E.

Note that , if the number of nodes in the graph is initially unknown, as we have
implicitly assumed, then no distr ibuted algorithm can find the M S T with fewer
than E messages; if there is an edge over which no message is sent, then there
might have been a node at the center of tha t edge, causing the algori thm to fail.

5. TIMING ANALYSIS

Although it appears tha t the algorithm typically allows a large amount of
parallelism in messages, it is not difficult to find examples such as Figure 2 in

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

74 R.G. Gallager, P. A. Humblet, and P. M. Spira

3§

j - i -I
1 W (i , j) = j + • j > i '~ j '

~ c ~ W (i , S) = v/-~- + i

S originally awakened

Fig. 2. Example when algorithm requires N (N - 1) message t ime units.

which most of the messages are sent sequentially. In particular, if node S originally
wakes up, each node j sequentially both sends a test message to each i _ j - 2
and receives a reject before any j ' > j is awakened. This leads to N (N - 1)
sequential messages.

If time is important, it is preferable to awaken all nodes originally; this can be
done in at most N - 1 time units assuming each message transmission requires
at most one time unit. We now show that, with this assumption of initial
awakening, the algorithm requires at most 5N log2N time units. Note first that,
by time N, each node will be awakened and will have sent a connect message. By
time 2N, each node must be at level one through the propagation of initiate
signals.

We proceed by induction on the level numbers, showing that it takes at most
51N - 3 N time units until all nodes are at level 1. This is true for 1 = 1; assume it
true for 1. At level l, each node can send at most N test messages which will be
answered before time 51N - N . The propagation of the report, change-root and
connect, and initiate messages can take at most 3N units, so that by time
5 (/ + 1)N - 3N all nodes are at level l + 1. At the highest level, 1 __ log2N,
only test, reject, and report messages are used; so the algorithm is complete by
time 5N log2N.

A worst-case O (N log N) is possible, as is shown by the example in Figure 3,
where the handle and the head both contain N / 2 nodes. If the edge weights in
the handle increase as one gets away from the head, then all nodes in the handle
will be in the same fragment at level one. If processing the head requires log
N / 2 levels and if at each level a fragment joins the handle, which can happen,
then the time until completion will be O (N log N).

APPENDIX

The algorithm to follow is obeyed by each node and consists of a list of the
responses to each type of message that can be generated. In addition, the response
to a spontaneous awakening of the node is given. Each node is assumed to queue

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

Distributed Algorithm for Minimum-Weight Spanning Trees 75

m

N Nodes

Fig. 3. Example when O(N
log2N) message t ime units are re-
quired with initial general awak-
ening.

the incoming messages and to respond to them in first-come, first-served order.
One particular response is to place the message back on the end of the queue for
delayed servicing, but, aside from this, each response is completed before the next
is started. Each node, of course, maintains its own set of variables, consisting of
its state (denoted by S N and assuming possible values Sleeping, Find, and
Found) and the state of the adjacent edges. The state of edge j is denoted by
S E (j) and can assume the possible values Basic, Branch , and Rejected. It is
possible for the edge states at the two nodes adjacent to the edge to be temporarily
inconsistent. Initially for each node, S N = Sleeping and S E (j) = Bas ic for each
adjacent edge j. Each node also maintains a fragment identity FN, a level L N ,
and variables best-edge, best-wt, test-edge, in-branch, and f ind-count, all of whose
initial values are immaterial. There is also an initially empty first-come first-
served queue for incoming messages. Finally, the weight of each adjacent edge j
is denoted w (j).

The Algorithm (As Executed at Each Node)

(1) Response to spontaneous awakening (can occur only at a node in the sleeping state)
execute procedure wakeup

(2) procedure wakeup
begin let m be adjacent edge of minimum weight;

SE (m) (--- Branch;
L N (-- 0;
SN (-- Found;
Find-count (-- 0;
send Connect(O) on edge m

end

(3) Response to receipt of Connect(L) on edgej
begin if SN = Sleeping then execute procedure wakeup;

if L < L N
t h e n begin SE (j) (--- Branch;

s e n d Initiate(LN, FN, SN) on edge j;
if SN = Find t h e n

find-count .-- find-count + 1
end

else if SE(j) = Basic
t h e n place received message on end of queue
else send Init iate(LN + 1, w(j) , Find) on edgej

end

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

76 R.G. Gallager, P. A. Humblet, and P. M. Spira

(4) Response to receipt of Initiate (L, F, S) on edge j
b e g i n L N *-- L; F N *-- F; S N *-- S; in-branch ,,--j;

best-edge *-- nil; best-wt ,,-- ~;
fo r a l l i ~ j such tha t SE(i) = Branch

do b e g i n s e n d Initiate(L, F, S) on edge i;
i f S = Find t h e n find-count ~-- find-count + 1

end;
i f S = Find t h e n e x e c u t e p r o c e d u r e test

e n d

(5) p r o c e d u r e test
i f there are adjacent edges in the state Basic

t h e n b e g i n test-edge ~-- the minimum-weight adjacent edge in state Basic;
s e n d Test(LN, FN) on test-edge

e n d
e l se b e g i n test-edge *-- nil; e x e c u t e p r o c e d u r e report e n d

(6) Response to receipt of Test(L, F) on e d g e j
b e g i n i f S N = Sleeping t h e n e x e c u t e p r o c e d u r e wakeup;

i f L > L N t h e n place received message on end of queue
e l se i f F ~ F N t h e n s e n d Accept on edge j

e l se b e g i n i f SE (j) = Basic t h e n SE (j) ~ Rejected;
i f test-edge ~ j t h e n s e n d Reject on edge j

e l se e x e c u t e p r o c e d u r e test
end
e n d

(7) Response to receipt of Accept on edge j
b e g i n test-edge ~- nil;

i f w (j) < best-wt
t h e n b e g i n best-edge ~-j; best-wt *- w (j) end;

e x e c u t e p r o c e d u r e report
e n d

(8) Response to receipt of Reject on edge j
b e g i n i f SE (j) = Basic t h e n SE (j) ~-- Rejected;

e x e c u t e p r o c e d u r e test
e n d

(9) p r o c e d u r e report
i f find-count = 0 a n d test-edge = nil

t h e n b e g i n S N *-- Found;
s e n d Report(best-wt) on in-branch

e n d

(10) Response to receipt of Report(w) on e d g e j
i f j ~ in-branch

t h e n b e g i n find-count ~- find-count - 1
i f w < best-wt t h e n b e g i n best-wt ,,-- w; best-edge ,~--j end;
e x e c u t e p r o c e d u r e report

e n d
e l se i f S N = Find t h e n place received message on end of queue

e lse i f w > best-wt
t h e n e x e c u t e p r o c e d u r e change-root
else i f w = best-wt = ~ t h e n h a l t

(11) p r o c e d u r e change-root
i f SE (best-edge) = Branch

t h e n s e n d Change-root on best-edge

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

Distributed Algorithm for Minimum-Weight Spanning Trees 77

e lse b e g i n s e n d Connect(LN) on best-edge;
S E (best-edge) *- Branch

end

(12) Response to receipt of Change-root

execute procedure change-root

REFERENCES

1. DALAL, Y. Broadcast protocols in packet switched computer networks. Tech. Rep. 128, Dep. of
Electrical Engineering, Stanford Univ., Apr. 1977 (revised version for publication in preparation).

2. DIJKSTRA, E. Two problems in connection with graphs. Numer. Math. 1 (1959), 269-271.
3. HUMBLET, P.A. A distributed algorithm for minimum weight directed spanning trees. Rep.

LIDS-P-1149, Laboratory for Information and Decision Systems, Massachusetts Inst. of Tech-
nology, Cambridge, Mass., Sept. 1981.

4. KRUSKAL, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Am. Math. Soc. 7 (1956}, 48-50.

5. LAWLER, E. Combinatorial Optimization-Networks and Matroids. Holt, Rinehart & Winston,
New York, 1976.

6. LIU, C.L. Introduction to Combinatorial Mathematics. McGraw Hill, New York, 1968.
7. PRIM, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 (1957),

1389-1401.
8. SPmA, P. Communication complexity of distributed minimum spanning tree algorithms. In

Proceedings, 2nd Berkeley Conference on Distributed Data Management and Computer Net-
works, Berkeley, Calif., June 1977.

9. YAO, A.C.C. An O(E log log V) algorithm for finding minimum spanning trees. Inf. Process.
Lett. 4 (1975), 21-23.

Received January 1980; revised February 1982; accepted May 1982

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

